
Emanuele Priola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A local proton source in a [Mn(bpy-R)(CO) ₃ Br]-type redox catalyst enables CO ₂ reduction even in the absence of BrÃ,nsted acids. Chemical Communications, 2014, 50, 14670-14673.	4.1	144
2	Autoluminescent Metal–Organic Frameworks (MOFs): Self-Photoemission of a Highly Stable Thorium MOF. Journal of the American Chemical Society, 2018, 140, 14144-14149.	13.7	56
3	One pot synthesis of low cost emitters with large Stokes' shift. Dyes and Pigments, 2017, 137, 152-164.	3.7	50
4	Selective Synthesis of a Salt and a Cocrystal of the Ethionamide–Salicylic Acid System. Crystal Growth and Design, 2020, 20, 906-915.	3.0	49
5	Electrochemical and Photochemical Reduction of CO ₂ Catalyzed by Re(I) Complexes Carrying Local Proton Sources. Organometallics, 2019, 38, 1351-1360.	2.3	48
6	Engineering Codrug Solid Forms: Mechanochemical Synthesis of an Indomethacin–Caffeine System. Crystal Growth and Design, 2017, 17, 5744-5752.	3.0	46
7	New substituted imidazo[1,5-a]pyridine and imidazo[5,1-a]isoquinoline derivatives and their application in fluorescence cell imaging. Dyes and Pigments, 2018, 157, 298-304.	3.7	31
8	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5- a]pyridine – Part 2. Dyes and Pigments, 2017, 143, 284-290.	3.7	30
9	Electronic Effects of Substituents on fac-M(bpy-R)(CO)3 (M = Mn, Re) Complexes for Homogeneous CO2 Electroreduction. Frontiers in Chemistry, 2019, 7, 417.	3.6	28
10	Relationship between oxygen content of graphene and mechanical properties of cement-based composites. Cement and Concrete Composites, 2021, 115, 103851.	10.7	28
11	Solvent-Free Synthesis of Luminescent Copper(I) Coordination Polymers with Thiourea Derivatives. Crystal Growth and Design, 2015, 15, 2929-2939.	3.0	27
12	Blue fluorescent zinc(II) complexes based on tunable imidazo[1,5-a]pyridines. Inorganica Chimica Acta, 2020, 509, 119662.	2.4	27
13	Unraveling the Hydrogen Bond Network in a Theophylline–Pyridoxine Salt Cocrystal by a Combined X-ray Diffraction, Solid-State NMR, and Computational Approach. Crystal Growth and Design, 2018, 18, 2225-2233.	3.0	25
14	Halogenated imidazo[1,5-a]pyridines: chemical structure and optical properties of a promising luminescent scaffold. Dyes and Pigments, 2019, 171, 107713.	3.7	21
15	Late production of Egyptian blue: synthesis from brass and its characteristics. Archaeological and Anthropological Sciences, 2019, 11, 5377-5392.	1.8	20
16	Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step. Organic and Biomolecular Chemistry, 2017, 15, 8218-8231.	2.8	18
17	Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorganic Chemistry, 2020, 59, 203-213.	4.0	17
18	Visible Light Mediated Photocatalytic <i>N</i> -Radical Cascade Reactivity of γ,δ-Unsaturated <i>N</i> -Arylsulfonylhydrazones: A General Approach to Structurally Diverse Tetrahydropyridazines. Journal of Organic Chemistry, 2021, 86, 3300-3323.	3.2	17

Emanuele Priola

#	Article	IF	CITATIONS
19	Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach. Journal of Physical Chemistry A, 2021, 125, 7080-7091.	2.5	15
20	Structural and spectroscopic study of the asymmetric 2-(2′-pyridyl)-1,8-naphthyridine ligand with closed-shell metals. Polyhedron, 2017, 138, 239-248.	2.2	14
21	Luminescent coordination polymers of 2,2′-bipyrimidine and mercury(II) salts: A structural and computational study. Polyhedron, 2016, 104, 25-36.	2.2	12
22	Visibleâ€Lightâ€Driven Photocatalytic Transformation of α,βâ€Unsaturatedâ€ <i>N</i> â€Tosylhydrazones: A Nov Route to Allylic Sulfones. ChemPhotoChem, 2017, 1, 56-59.	'el 3.0	12
23	Vibrational–Structural Combined Study into Luminescent Mixed Copper(I)/Copper(II) Cyanide Coordination Polymers. European Journal of Inorganic Chemistry, 2016, 2016, 2975-2983.	2.0	11
24	Photochemical CO ₂ Reduction Using Rhenium(I) Tricarbonyl Complexes with Bipyridylâ€Type Ligands with and without Second Coordination Sphere Effects. ChemPhotoChem, 2021, 5, 526-537.	3.0	11
25	Unprecedented [d9]Cuâ‹~[d10]Au coinage bonding interactions in {Cu(NH3)4[Au(CN)2]}+[Au(CN)2]â^' salt. Chemical Communications, 2021, 57, 7268-7271.	4.1	8
26	Reticular chemistry applied on coordination polymers of Copper(I) cyanide with tridentate ligands: effect of the ligand flexibility and donor properties on topology, dimensionality and reaction behavior in solvothermal conditions. Polyhedron, 2021, 198, 115059.	2.2	7
27	Molecular Crystal Forms of Antitubercular Ethionamide with Dicarboxylic Acids: Solid-State Properties and a Combined Structural and Spectroscopic Study. Pharmaceutics, 2020, 12, 818.	4.5	6
28	Polymorphism and solid state peculiarities in imidazo[1,5-a]pyridine core deriving compounds: An analysis of energetic and structural driving forces. Journal of Molecular Structure, 2022, 1253, 132175.	3.6	5
29	Crystal engineering of aurophilic supramolecular architectures and coordination polymers based on butterfly-like copper–dicyanoaurate complexes: vapochromism, <i>P</i> – <i>T</i> behaviour and multi-metallic cocrystal formation. CrystEngComm, 2022, 24, 2336-2348.	2.6	5
30	A new heterometallic multiligand 3D coordination polymer: synthesis and structure of [Pb(OH)]n[Ag(SCN)(CN)]n. CrystEngComm, 2014, 16, 10040-10045.	2.6	4
31	Gold(I)-Catalyzed Reactivity of Furan-ynes with <i>N</i> -Oxides: Synthesis of Substituted Dihydropyridinones and Pyranones. Journal of Organic Chemistry, 2021, 86, 8295-8307.	3.2	4
32	On the nature of recurrent Auâ< i€ motifs in tris(2,2′-bipyridine)M(<scp>ii</scp>) (M = Fe, Co and Ni) dicyanoaurate(<scp>i</scp>) salts: X-ray analysis and theoretical rationalization. Dalton Transactions, 2021, 50, 16954-16960.	3.3	4
33	Pseudopolymorphism Driven by Stoichiometry and Hydrated/Anhydrous Reagents: The Riveting Case of Methyl Gallate· <scp>l</scp> -Proline. Crystal Growth and Design, 2021, 21, 6776-6785.	3.0	4
34	Unconventional reactivity of epichlorohydrin in the presence of triphenylphosphine: isolation of ((1,4-dioxane-2,5-diyl)-bis-(methylene))-bis-(triphenylphosphonium) chloride. Research on Chemical Intermediates, 2021, 47, 1663-1674.	2.7	3
35	[Ag(PPh 3) 4][(PPh 3)CdCl 3], the first monomeric trichlorocadmate complex bonded to a phosphorus ligand: A structural and spectroscopic study in solution and solid state. Inorganic Chemistry Communication, 2016, 70, 35-40.	3.9	2
36	Photochemical CO 2 Reduction Using Rhenium(I) Tricarbonyl Complexes with Bipyridylâ€Type Ligands with and without Second Coordination Sphere Effects. ChemPhotoChem, 2021, 5, 494-494.	3.0	1

Emanuele Priola

#	Article	IF	CITATIONS
37	A new auspicious scaffold for small dyes and fluorophores. Dyes and Pigments, 2022, 197, 109849.	3.7	1
38	Metallophilic interactions in silver(<scp>i</scp>) dicyanoaurate complexes. Dalton Transactions, 2022, , .	3.3	1
39	HgBrl: a possible tecton for NLO molecular materials?. Dalton Transactions, 2022, 51, 5296-5308.	3.3	1
40	Reticular chemistry studies on CuCN derivatives for new luminescent materials. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C197-C197.	0.1	0