
Alexander V Polezhaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of Cyclopentadiene for <i>Diels–Alder</i> Reactions by Visibleâ€Light Irradiation of Iron Sandwich Complexes. Helvetica Chimica Acta, 2022, 105, .	1.6	3
2	Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems. Processes, 2022, 10, 30.	2.8	8
3	Enhancement of 1Tâ€MoS ₂ Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. ChemNanoMat, 2021, 7, 447-456.	2.8	11
4	Silica-Based Aerogels with Tunable Properties: The Highly Efficient BF ₃ -Catalyzed Preparation and Look inside Their Structure. Macromolecules, 2021, 54, 1961-1975.	4.8	10
5	Synthetic Approaches to New Redox-Active Carbene Ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 117-126.	1.0	2
6	Composite Materials Manufactured by Photopolymer 3D Printing with Metal-Organic Frameworks. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 319-325.	1.0	7
7	Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels–Alder Reaction. Polymers, 2021, 13, 1935.	4.5	8
8	Spin State of Cobalt(II) 2,6-Bis(pyrazol-3-yl)pyridine Complex with a Redox-Active Ferrocenyl Substituent. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 480-487.	1.0	0
9	Spin-Crossover in Iron(II) Complexes of N,N′-Disubstituted 2,6-Bis(Pyrazol-3-yl)Pyridines: An Effect of a Distal Substituent in the 2,6-Dibromophenyl Group. Crystals, 2021, 11, 922.	2.2	5
10	Room-Temperature Spin Crossover in a Solution of Iron(II) Complexes with N,N′-Disubstituted Bis(pyrazol-3-yl)pyridines. ACS Omega, 2021, 6, 33111-33121.	3.5	7
11	Residual heavy metals in industrial chitosan: State of distribution. International Journal of Biological Macromolecules, 2020, 155, 979-986.	7.5	2
12	Iron(II) and Cobalt(II) Complexes with 2,6-Bis(1,4-Diphenyl-5-Hydroxy-1H-Pyrazol-3-yl)pyridine: Synthesis, Structures, and Spin States. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 317-325.	1.0	2
13	Synthesis and Spin State of the Iron(II) Complex with the N,N'-Disubstituted 2,6-Bis(pyrazol-3-yl)pyridine Ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 402-410.	1.0	1
14	New Iron(III) Oxo Complex with Substituted 2,6-Bis(Pyrazol-3-yl)Pyridine. Russian Journal of Inorganic Chemistry, 2020, 65, 864-869.	1.3	1
15	Towards the Molecular Design of Spin rossover Complexes of 2,6â€Bis(pyrazolâ€3â€yl)pyridines. Chemistry - A European Journal, 2020, 26, 5629-5638.	3.3	28
16	Ortho-lithiation of N-aryl ferrocenylmethanimines. Inorganica Chimica Acta, 2019, 495, 118976.	2.4	2
17	Spin State of the Iron(II) and Cobalt(II) 2,6-Di(5-Amino-1H-Pyrazol-3-yl)pyridine Complexes in Solution and in Crystal. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 402-410.	1.0	5
18	New Spin-Crossover Complexes of Substituted 2,6-Bis(pyrazol-3-yl)pyridines. European Journal of Inorganic Chemistry, 2019, 2019, 2819-2829.	2.0	15

#	Article	IF	CITATIONS
19	Reductive Silylation Using a Bisâ€silylated Diazaâ€2,5â€cyclohexadiene. Chemistry - A European Journal, 2019, 25, 8105-8111.	3.3	9
20	Selfâ€healing polyurethane based on a difuranic monomer from biorenewable source. Journal of Applied Polymer Science, 2019, 136, 47869.	2.6	18
21	Detailed electronic structure of a high-spin cobalt(<scp>ii</scp>) complex determined from NMR and THz-EPR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 8201-8204.	2.8	30
22	Dihydrogen and dinitrogen rhodium complexes bearing metallocene-based pincer ligands. Inorganica Chimica Acta, 2019, 496, 118844.	2.4	6
23	Multiâ€electron Reduction Capacity and Multiple Binding Pockets in Metal–Organic Redox Assembly at Surfaces. Chemistry - A European Journal, 2019, 25, 5565-5573.	3.3	7
24	Redox-active ligand controlled selectivity of vanadium oxidation on Au(100). Chemical Science, 2018, 9, 1674-1685.	7.4	24
25	A substituent-tolerant synthetic approach to N/P-"loaded―heteroarenes. Dalton Transactions, 2018, 47, 5938-5942.	3.3	12
26	A PNNH Pincer Ligand Allows Access to Monovalent Iron. Chemistry - A European Journal, 2018, 24, 1330-1341.	3.3	22
27	Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study. Magnetochemistry, 2018, 4, 46.	2.4	17
28	Synthesis and Spin State of the Cobalt(II) Complexes with Substituted 2,6-Bis(pyrazol-3-yl)pyridine Ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 489-495.	1.0	9
29	A multimetal-ligand cooperative approach to CO2 activation. Inorganica Chimica Acta, 2018, 483, 510-515.	2.4	2
30	A Multifunctional Pincer Ligand Supports Unsaturated Cobalt: Five Functionalities in One Pincer. Chemistry - A European Journal, 2017, 23, 8039-8050.	3.3	26
31	Deprotonation, Chloride Abstraction, and Dehydrohalogenation as Synthetic Routes to Bisâ€Pyrazolate Pyridyl Iron(II) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 3999-4012.	2.0	19
32	Ligand Design toward Multifunctional Substrate Reductive Transformations. Inorganic Chemistry, 2017, 56, 9505-9514.	4.0	21
33	Tetrazine Assists Reduction of Water by Phosphines: Application in the Mitsunobu Reaction. Chemistry - A European Journal, 2016, 22, 13985-13998.	3.3	16
34	A mechanistic study of the reaction between furfural-acetone resins and polyamines. Polymer Science - Series D, 2016, 9, 17-21.	0.6	13
35	Two- and Three-Electron Oxidation of Single-Site Vanadium Centers at Surfaces by Ligand Design. Journal of the American Chemical Society, 2015, 137, 7898-7902.	13.7	37
36	Rheological and thermal analysis of low-viscosity epoxy-furan composites. Polymer Science - Series D, 2013, 6, 308-311.	0.6	14

#	Article	IF	CITATIONS
37	Alkylation of nitrogen heterocycles with 1,3-bis(hydroxymethyl)ferrocene. Generation of the ferrocene dicarbocation [{1,3-(CH2)2C5H3}Fe(C5H5)]2+. Russian Chemical Bulletin, 2010, 59, 2098-2101.	1.5	3
38	Cationic Ruthenium Hydridoâ^'Carbonyls Derived from Metallocene-Based Pincers: Unusual Rearrangements and H ₂ Evolution with Formation of Cationic Ruthenium Metallocenylidenes. Organometallics, 2010, 29, 4360-4368.	2.3	39
39	Ruthenium bis(phosphinite) pincer complexes. Russian Chemical Bulletin, 2009, 58, 1701-1706.	1.5	4
40	Activation of small molecules by a rhodium bis(phosphinite) pincer complex. Russian Chemical Bulletin, 2009, 58, 1847-1854.	1.5	20
41	New Chain-Extenders for Recyclable Cross-Linked Polyurethanes. Key Engineering Materials, 0, 899, 518-524.	0.4	0
42	New Chain Extenders for Self-Healing Polymers. Key Engineering Materials, 0, 899, 628-637.	0.4	1