
Florbela Carvalheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of lignin pathways of valorization: from isolation to refining and conversion into value-added products. Biomass Conversion and Biorefinery, 2024, 14, 3183-3207.	4.6	8
2	Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp. Biomass Conversion and Biorefinery, 2023, 13, 10677-10688.	4.6	5
3	D-Lactic acid production from Cistus ladanifer residues: Co-fermentation of pentoses and hexoses by Escherichia coli JU15. Industrial Crops and Products, 2022, 177, 114519.	5.2	11
4	Development of an innovative macroalgae biorefinery: Oligosaccharides as pivotal compounds. Fuel, 2022, 320, 123780.	6.4	4
5	Combination of Autohydrolysis and Catalytic Hydrolysis of Biomass for the Production of Hemicellulose Oligosaccharides and Sugars. Reactions, 2022, 3, 30-46.	2.1	8
6	Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies, 2022, 15, 4348.	3.1	14
7	Assessment of the effect of autohydrolysis treatment in banana's pseudostem pulp. Waste Management, 2021, 119, 306-314.	7.4	18
8	Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes. Energies, 2021, 14, 1127.	3.1	17
9	Recovery of Bioactive Compounds from Industrial Exhausted Olive Pomace through Ultrasound-Assisted Extraction. Biology, 2021, 10, 514.	2.8	17
10	The use of flow cytometry to assess Rhodosporidium toruloides NCYC 921 performance for lipid production using Miscanthus sp. hydrolysates. Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00639.	4.4	4
11	Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings (mdpi), 2021, 70, 10.	0.2	2
12	Effective Production of Bioactive Phenolic Compounds from Olive Stones. , 2021, 6, .		0
13	Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conversion and Biorefinery, 2020, 10, 325-337.	4.6	12
14	Bioproducts from forest biomass II. Bioactive compounds from the steam-distillation by-products of Cupressus lusitanica Mill. and Cistus ladanifer L. wastes. Industrial Crops and Products, 2020, 158, 112991.	5.2	16
15	Technoâ€economic and lifeâ€cycle assessments of smallâ€scale biorefineries for isobutene and xyloâ€oligosaccharides production: a comparative study in Portugal and Chile. Biofuels, Bioproducts and Biorefining, 2019, 13, 1321-1332.	3.7	31
16	Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. Bioenergy Research, 2019, 12, 347-358.	3.9	19
17	Hydrothermal Treatments of Cistus ladanifer Industrial Residues Obtained from Essential Oil Distilleries. Waste and Biomass Valorization, 2019, 10, 1303-1310.	3.4	12
18	Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw. Process Biochemistry, 2018, 65, 136-145.	3.7	29

#	Article	IF	CITATIONS
19	Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydrate Polymers, 2017, 169, 149-156.	10.2	32
20	Selective single-stage xylan-to-xylose hydrolysis and its effect on enzymatic digestibility of energy crops giant reed and cardoon for bioethanol production. Industrial Crops and Products, 2017, 95, 104-112.	5.2	11
21	Bioethanol production from extracted olive pomace: dilute acid hydrolysis. Bioethanol, 2016, 2, .	1.2	22
22	Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydrate Polymers, 2016, 136, 466-473.	10.2	59
23	Fractionation of Hemicelluloses and Lignin from Rice Straw by Combining Autohydrolysis and Optimised Mild Organosolv Delignification. BioResources, 2015, 10, .	1.0	42
24	Acid-modified clays as green catalysts for the hydrolysis of hemicellulosic oligosaccharides. Catalysis Science and Technology, 2015, 5, 4072-4080.	4.1	14
25	Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe. Bioresource Technology, 2015, 183, 213-220.	9.6	39
26	Autohydrolysis of Annona cherimola Mill. seeds: Optimization, modeling and products characterization. Biochemical Engineering Journal, 2015, 104, 2-9.	3.6	22
27	Nanofiltration and reverse osmosis as a platform for production of natural botanic extracts: The case study of carob by-products. Separation and Purification Technology, 2015, 149, 389-397.	7.9	23
28	Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: Eucalyptus residues, wheat straw and olive tree pruning. Bioresource Technology, 2015, 183, 203-212.	9.6	54
29	Selective recovery of phenolic compounds and carbohydrates from carob kibbles using water-based extraction. Industrial Crops and Products, 2015, 70, 443-450.	5.2	29
30	Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiologiae Plantarum, 2014, 36, 755-765.	2.1	29
31	Hydrolysis of Oligosaccharides Over Solid Acid Catalysts: A Review. ChemSusChem, 2014, 7, 1010-1019.	6.8	100
32	Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresource Technology, 2014, 152, 526-529.	9.6	63
33	Detoxification of hemicellulosic hydrolysates from extracted olive pomace by diananofiltration. Process Biochemistry, 2014, 49, 173-180.	3.7	32
34	Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate. Bioresource Technology, 2014, 169, 206-212.	9.6	17
35	Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Industrial Crops and Products, 2014, 62, 460-465.	5.2	68
36	Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Industrial Crops and Products, 2013, 50, 145-153.	5.2	77

Florbela Carvalheiro

#	Article	IF	CITATIONS
37	Deconstruction of the Hemicellulose Fraction from Lignocellulosic Materials into Simple Sugars. , 2012, , 3-37.		13
38	Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Industrial Crops and Products, 2012, 40, 225-231.	5.2	70
39	Mannitol production by lactic acid bacteria grown in supplemented carob syrup. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 221-227.	3.0	63
40	Removal of inhibitory compounds from olive stone auto-hydrolysis liquors by nanofiltration. Desalination and Water Treatment, 2011, 27, 90-96.	1.0	18
41	Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 2010, 101, 4775-4800.	9.6	1,249
42	Dilute Acid Hydrolysis of Wheat Straw Oligosaccharides. Applied Biochemistry and Biotechnology, 2009, 153, 116-126.	2.9	38
43	Wheat Straw Autohydrolysis: Process Optimization and Products Characterization. Applied Biochemistry and Biotechnology, 2009, 153, 84-93.	2.9	193
44	Separation of olive tree pruning oligomers from liquid hot water hydrolyzates using preparative gel filtration chromatography. New Biotechnology, 2009, 25, S249.	4.4	4
45	Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate. Applied Biochemistry and Biotechnology, 2008, 148, 119-129.	2.9	21
46	Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis. Biotechnology Progress, 2008, 21, 233-243.	2.6	62
47	In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT - Food Science and Technology, 2007, 40, 963-972.	5.2	166
48	Biotechnological valorization potential indicator for lignocellulosic materials. Biotechnology Journal, 2007, 2, 1556-1563.	3.5	15
49	Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: effect of supplementation. Biotechnology Letters, 2007, 29, 1887-1891.	2.2	36
50	Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate. , 2007, , 637-647.		1
51	The Combined Effects of Acetic Acid, Formic Acid, and Hydroquinone on Debaryomyces hansenii Physiology. , 2006, , 461-475.		1
52	The Combined Effects of Acetic Acid, Formic Acid, and Hydroquinone on <i>Debaryomyces hansenii</i> Physiology. Applied Biochemistry and Biotechnology, 2006, 130, 461-475.	2.9	15
53	Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 646-654.	3.0	27
54	Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 2005, 40, 1215-1223.	3.7	141

#	Article	IF	CITATIONS
55	Effects of Aliphatic Acids, Furfural, and Phenolic Compounds on <i>Debaryomyces hansenii </i> CCMI 941. Applied Biochemistry and Biotechnology, 2005, 121, 0413-0426.	2.9	52
56	Comparison of Two Posthydrolysis Processes of Brewery's Spent Grain Autohydrolysis Liquor to Produce a Pentose-Containing Culture Medium. Applied Biochemistry and Biotechnology, 2004, 115, 1041-1058.	2.9	55
57	Optimization of Brewery's Spent Grain Dilute-Acid Hydrolysis for the Production of Pentose-Rich Culture Media. Applied Biochemistry and Biotechnology, 2004, 115, 1059-1072.	2.9	33
58	Production of oligosaccharides by autohydrolysis of brewery's spent grain. Bioresource Technology, 2004, 91, 93-100.	9.6	238
59	Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydrate Polymers, 2002, 50, 47-56.	10.2	205
60	Interactive effects of sodium chloride and heat shock on trehalose accumulation and glycerol production bySaccharomyces cerevisiae. Food Microbiology, 1999, 16, 543-550.	4.2	21
61	Biological conversion of tomato pomace by pure and mixed fungal cultures. Process Biochemistry, 1994, 29, 601-605.	3.7	18
62	D-lactic acid production from hydrothermally pretreated, alkali delignified and enzymatically saccharified rockrose with the metabolic engineered Escherichia coli strain JU15. Biomass Conversion and Biorefinery, 0, , 1.	4.6	4
63	Combined Extraction and Ethanol Organosolv Fractionation of Exhausted Olive Pomace for Bioactive Compounds. Advanced Sustainable Systems, 0, , 2100361.	5.3	8