
Marianne Impéror-Clerc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of particle aggregation in the structure of dried colloidal silica layers. Soft Matter, 2021, 17, 1589-1600.	1.2	9
2	Structure and Formation Kinetics of Millimeter‣ize Single Domain Supercrystals. Advanced Functional Materials, 2021, 31, 2101869.	7.8	9
3	Softness-driven complexity in supercrystals of gold nanoparticles. Soft Matter, 2021, 17, 6461-6469.	1.2	8
4	Square-triangle tilings: an infinite playground for soft matter. Soft Matter, 2021, 17, 9560-9575.	1.2	9
5	Precise size control of hydrophobic gold nanoparticles in the 2–5 nm range. Chemical Communications, 2021, 57, 12512-12515.	2.2	3
6	Grazing Incidence X-ray Diffraction Studies of Lipid–Peptide Mixed Monolayers during Shear Flow. ACS Omega, 2020, 5, 14555-14563.	1.6	4
7	Molecular-Scale Understanding of the Embrittlement in Polyethylene Ocean Debris. Environmental Science & Technology, 2020, 54, 11173-11181.	4.6	39
8	Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 2018, 41, 327-336.	3.8	95
9	Epsilonâ€Fe ₂ O ₃ Nanocrystals inside Mesoporous Silicas with Tailored Morphologies of Rod, Platelet and Donut. ChemNanoMat, 2018, 4, 1168-1176.	1.5	3
10	Ruthenium silica nanoreactors with varied metal–wall distance for efficient control of hydrocarbon distribution in Fischer–Tropsch synthesis. Journal of Catalysis, 2018, 365, 429-439.	3.1	13
11	Freezing-induced self-assembly of amphiphilic molecules. Soft Matter, 2017, 13, 1759-1763.	1.2	18
12	Macroscopic Magnetic Anisotropy Induced by the Combined Control of Size, Shape and Organization of NiFe Prussian Blue Analog Nanoparticles in an Ordered Mesoporous Silica Monolith. ChemNanoMat, 2017, 3, 833-840.	1.5	4
13	Outset of the Morphology of Nanostructured Silica Particles during Nucleation Followed by Ultrasmall-Angle X-ray Scattering. Langmuir, 2016, 32, 5162-5172.	1.6	14
14	On the use of shear rheology to formulate stable foams. Example of a lyotropic lamellar phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 110-117.	2.3	7
15	Alignment under Magnetic Field of Mixed Fe ₂ O ₃ /SiO ₂ Colloidal Mesoporous Particles Induced by Shape Anisotropy. Small, 2016, 12, 5981-5988.	5.2	16
16	Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure. Journal of Physical Chemistry B, 2016, 120, 5759-5766.	1.2	46
17	On the stability of foams made with surfactant bilayer phases. Soft Matter, 2016, 12, 1459-1467.	1.2	19
18	In Situ Smallâ€Angle Xâ€ray Scattering Investigation of the Formation of Dualâ€Mesoporous Materials. ChemPhysChem, 2015, 16, 3637-3641.	1.0	1

#	Article	IF	CITATIONS
19	Ultrathin Gold Nanowires: Soft-Templating versus Liquid Phase Synthesis, a Quantitative Study. Journal of Physical Chemistry C, 2015, 119, 4422-4430.	1.5	40
20	Solvent-driven interactions between hydrophobically-coated nanoparticles. Soft Matter, 2015, 11, 3920-3926.	1.2	14
21	Directed Assembly of Single Colloidal Gold Nanowires by AFM Nanoxerography. Langmuir, 2015, 31, 4106-4112.	1.6	15
22	Growth and Self-Assembly of Ultrathin Au Nanowires into Expanded Hexagonal Superlattice Studied by in Situ SAXS. Langmuir, 2014, 30, 4005-4012.	1.6	56
23	Morphologies of mesoporous SBA-15 particles explained by the competition between interfacial and bending energies. Soft Matter, 2013, 9, 11085.	1.2	14
24	Direct Observation of Plugs and Intrawall Pores in SBA-15 Using Low Voltage High Resolution Scanning Electron Microscopy and the Influence of Solvent Properties on Plug-Formation. Chemistry of Materials, 2013, 25, 4105-4112.	3.2	29
25	Formation of Nanostructured Silica Materials Templated with Nonionic Fluorinated Surfactant Followed by in Situ SAXS. Langmuir, 2013, 29, 2007-2023.	1.6	11
26	Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14849-14854.	3.3	12
27	In Situ Time-Resolved SAXS Study of the Formation of Mesostructured Organically Modified Silica through Modeling of Micelles Evolution during Surfactant-Templated Self-Assembly. Langmuir, 2012, 28, 17477-17493.	1.6	25
28	Three-dimensional periodic complex structures in soft matter: investigation using scattering methods. Interface Focus, 2012, 2, 589-601.	1.5	23
29	The interaction of charged nanoparticles at interfaces. Europhysics Letters, 2012, 100, 18002.	0.7	4
30	Kinetics of the Formation of 2D-Hexagonal Silica Nanostructured Materials by Nonionic Block Copolymer Templating in Solution. Journal of Physical Chemistry B, 2011, 115, 11330-11344.	1.2	64
31	Smectic polymer micellar aggregates with temperature-controlled morphologies. Soft Matter, 2011, 7, 7395.	1.2	74
32	Structure of Micelles of a Nonionic Block Copolymer Determined by SANS and SAXS. Journal of Physical Chemistry B, 2011, 115, 11318-11329.	1.2	122
33	Facile direct synthesis of ZnO nanoparticles within lyotropic liquid crystals: towards organized hybrid materials. Journal of Materials Chemistry, 2011, 21, 18191.	6.7	30
34	The key to control Cu II loading in silica based mesoporous materials. Microporous and Mesoporous Materials, 2010, 132, 518-525.	2.2	28
35	Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 2008, 142, 67-74.	7.0	75
36	SBA-15 synthesis: Are there lasting effects of temperature change within the first 10min of TEOS polymerization?. Materials Chemistry and Physics, 2008, 108, 73-81.	2.0	47

#	Article	IF	CITATIONS
37	SANS study of the mechanisms and kinetics of the synthesis of mesoporous materials from micelles of tri-block copolymers. Studies in Surface Science and Catalysis, 2008, , 805-810.	1.5	6
38	New insights into the initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation. Chemical Communications, 2007, , 834-836.	2.2	39
39	Hexagonal Close Packing of Nonionic Surfactant Micelles in Water. Journal of Physical Chemistry B, 2007, 111, 5174-5179.	1.2	28
40	Xâ€ray Diffraction Study of the Structure of Carboxymethylcellulose–Cationic Surfactant Complexes. ChemPhysChem, 2007, 8, 2379-2385.	1.0	25
41	Modifying the porosity of SBA-15 silicas by post-synthesis basic treatments. Microporous and Mesoporous Materials, 2007, 102, 234-241.	2.2	23
42	Synthesis of Single-Crystalline Platinum Nanorods within a Soft Crystalline Surfactant-PtIIComplex. ChemPhysChem, 2006, 7, 1510-1513.	1.0	63
43	Thermotropic cubic mesophases. Current Opinion in Colloid and Interface Science, 2005, 9, 370-376.	3.4	103
44	A triple-network tricontinuous cubicliquid crystal. Nature Materials, 2005, 4, 562-567.	13.3	151
45	Nanocasting, templated syntheses and structural studies of manganese oxide nanoparticles nucleated in the pores of ordered mesoporous silicas (SBA-15). Comptes Rendus Chimie, 2005, 8, 663-677.	0.2	26
46	Characterization of the Initial Stages of SBA-15 Synthesis by in Situ Time-Resolved Small-Angle X-ray Scattering. Journal of Physical Chemistry B, 2005, 109, 22780-22790.	1.2	87
47	Supramolecular Metallomesogens:Â Hydrogen-Bonded Ferrocene-Containing Liquid Crystals Which Display Bicontinuous Cubic Phases. Chemistry of Materials, 2005, 17, 1946-1951.	3.2	42
48	Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas:  In Situ Investigation Using Synchrotron Radiation. Chemistry of Materials, 2004, 16, 1813-1821.	3.2	192
49	A New Cubic Phase Containing DNA and a Surfactant. ChemPhysChem, 2004, 5, 1619-1623.	1.0	46
50	Aqueous Cholesteric Liquid Crystals Using Uncharged Rodlike Polypeptides. Journal of the American Chemical Society, 2004, 126, 9101-9105.	6.6	38
51	Anla3Â⁻dthermotropic cubic phase fromN-alkylpyridinium tetrahalocuprates. Liquid Crystals, 2004, 31, 907-912.	0.9	31
52	AFM, X-ray Diffraction and Optical Microscopy Studies of Faceted Droplets of a Thermotropic Bicontinuous Cubic Mesophase. ChemPhysChem, 2002, 3, 1031-1034.	1.0	8
53	Phase Transition between Single Crystals of Two Thermotropic Cubic Phases from a Mixture of 3,5-Didodecyloxybenzoic Acid and C18-ANBC. ChemPhysChem, 2001, 2, 533-535.	1.0	17
54	Devil's Staircase–Type Faceting of a Cubic Lyotropic Liquid Crystal. Physical Review Letters, 2000, 84, 2409-2412.	2.9	44