Qinghong Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523188/publications.pdf

Version: 2024-02-01

257450 214800 2,320 61 24 47 h-index citations g-index papers 61 61 61 2128 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 266-274.	10.3	341
2	Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs <i>via</i> large-scale preparation. Journal of Materials Chemistry A, 2018, 6, 6376-6386.	10.3	183
3	Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Applied Surface Science, 2019, 469, 487-494.	6.1	179
4	Few layered Co(OH) ₂ ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chemistry, 2016, 18, 3066-3074.	9.0	171
5	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology, 2018, 154, 136-144.	7.8	146
6	Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Applied Clay Science, 2017, 146, 230-237.	5.2	98
7	High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Research, 2020, 13, 2862-2868.	10.4	94
8	Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Composites Science and Technology, 2019, 182, 107748.	7.8	88
9	Controllable Solid-Phase Fabrication of an Fe ₂ /Fe–N–C Electrocatalyst toward Optimizing the Oxygen Reduction Reaction in Zinc–Air Batteries. Nano Letters, 2022, 22, 4879-4887.	9.1	72
10	Facile <i>in situ</i> fabrication of biomorphic Co ₂ P-Co ₃ O ₄ /rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale, 2020, 12, 4374-4382.	5.6	68
11	Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Research, 2021, 14, 3598-3607.	10.4	60
12	Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceramics International, 2017, 43, 14395-14400.	4.8	52
13	Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. Journal of Thermal Analysis and Calorimetry, 2020, 140, 149-156.	3.6	45
14	Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochimica Acta, 2022, 707, 179112.	2.7	36
15	Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Feâ€montmorillonite nanocomposites. Polymers for Advanced Technologies, 2009, 20, 404-409.	3.2	34
16	Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 3933-3942.	6.0	34
17	Selective Preparation of Mo ₂ N and MoN with High Surface Area for Flexible SERS Sensing. Nano Letters, 2021, 21, 4410-4414.	9.1	33
18	A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries. Nano Research, 2022, 15, 2092-2103.	10.4	33

#	Article	IF	Citations
19	Germanium-based complex derived porous GeO2 nanoparticles for building high performance Li-ion batteries. Ceramics International, 2018, 44, 1127-1133.	4.8	31
20	A Promising Hard Carbonâ^'Soft Carbon Composite Anode with Boosting Sodium Storage Performance. ChemElectroChem, 2020, 7, 4010-4015.	3.4	31
21	Converting Polyethylene Waste into Large Scale One-Dimensional Fe ₃ O ₄ @C Composites by a Facile One-Pot Process. Industrial & Discourse Engineering Chemistry Research, 2013, 52, 5708-5712.	3.7	30
22	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2117-2124.	3.6	28
23	Improving Thermal and Flame Retardant Properties of Epoxy Resin with Organic NiFeâ€Layered Double Hydroxideâ€Carbon Nanotubes Hybrids. Chinese Journal of Chemistry, 2017, 35, 1875-1880.	4.9	27
24	General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nature Communications, 2021, 12, 1376.	12.8	27
25	Polyphosphazene-wrapped Fe–MOF for improving flame retardancy and smoke suppression of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2021, 144, 51-59.	3.6	25
26	Sustainable processing of waste polypropylene to produce high yield valuable Fe/carbon nanotube nanocomposites. CrystEngComm, 2014, 16, 8832-8840.	2.6	24
27	Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. Journal of Thermal Analysis and Calorimetry, 2014, 117, 693-699.	3.6	24
28	Effect on thermal and combustion behaviors of montmorillonite intercalation nickel compounds in polypropylene/IFR system. Polymers for Advanced Technologies, 2017, 28, 965-970.	3.2	21
29	Improving flame retardancy of PP/MH/RP composites through synergistic effect of organic CoAl-layered double hydroxide. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1039-1046.	3.6	19
30	Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering. IScience, 2019, 19, 836-849.	4.1	19
31	General fabrication and enhanced VOC gas-sensing properties of hierarchically porous metal oxides. RSC Advances, 2017, 7, 35897-35904.	3.6	18
32	Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. Journal of Thermal Analysis and Calorimetry, 2016, 124, 807-814.	3.6	16
33	Boosting flame retardancy of epoxy resin composites through incorporating ultrathin nickel phenylphosphate nanosheets. Journal of Applied Polymer Science, 2021, 138, 50265.	2.6	16
34	Self-assembled synthesis of carbon-coated Fe3O4 composites with firecracker-like structures from catalytic pyrolysis of polyamide. RSC Advances, 2014, 4, 6991.	3.6	15
35	Preparation of CoSnO ₃ /CNTs/S and its Electrochemical Performance as Cathode Material for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2020, 7, 4209-4217.	3.4	14
36	NiAl Layered Double Hydroxide Flowers with Ultrathin Structure Grown on 3D Graphene for Highâ€Performance Supercapacitors. European Journal of Inorganic Chemistry, 2019, 2019, 3719-3723.	2.0	13

#	Article	IF	CITATIONS
37	Fabrication of Porous ZnO/Co ₃ O ₄ Composites for Improving Cycling Stability of Supercapacitors. Journal of Nanoscience and Nanotechnology, 2018, 18, 4884-4890.	0.9	12
38	Gasâ€Sensing Activity of Amorphous Copper Oxide Porous Nanosheets. ChemistryOpen, 2020, 9, 80-86.	1.9	11
39	Kinetics of thermo-oxidative degradation of polypropylene/aluminum trihydroxide/organo Fe-montmorillonite nanocomposites. Journal of Thermal Analysis and Calorimetry, 2011, 104, 1145-1151.	3.6	10
40	Improving the Thermal Stability and Flame Retardancy of PP/IFR Composites by NiAl-Layered Double Hydroxide. Journal of Nanoscience and Nanotechnology, 2018, 18, 3660-3665.	0.9	9
41	General Microwave Route to Single-Crystal Porous Transition Metal Nitrides for Highly Sensitive and Stable Raman Scattering Substrates. Nano Letters, 2021, 21, 7724-7731.	9.1	9
42	Moving MoO ₂ /C Nanospheres with the Functions of Enrichment and Sensing for Online-High-Throughput SERS Detection. Analytical Chemistry, 2022, 94, 7029-7034.	6.5	9
43	Effect of Fe-Montmorillonite on Flammability Behavior in Polypropylene/Magnesium Hydroxide Composites. Journal of Nanoscience and Nanotechnology, 2016, 16, 8287-8293.	0.9	8
44	Thermal Stability and Flame Retardancy of Polypropylene/NiAl Layered Double Hydroxide Nanocomposites. Journal of Nanoscience and Nanotechnology, 2018, 18, 1051-1056.	0.9	8
45	Functionalized Montmorillonite Intercalation Iron Compounds for Improving Flame Retardancy of Epoxy Resin Nanocomposites. Journal of Nanoscience and Nanotechnology, 2019, 19, 5803-5809.	0.9	8
46	Molten Salt-assisted Magnesiothermic Reduction Synthesis of Spherical Si Hollow Structure as Promising Anode Materials of Lithium Ion Batteries. Chemistry Letters, 2019, 48, 1547-1550.	1.3	8
47	Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery. Frontiers in Energy, 2020, 14, 759-766.	2.3	8
48	Suppressing fire hazard of poly(vinyl alcohol) based on (<scp>NH₄</scp>)(sub>2[<scp>VO</scp> (<scp>HPO₄</scp>)] ₂ with layered structure. Journal of Applied Polymer Science, 2021, 138, 51345.	(< ≋cp >C <s< td=""><td>sus>20</td></s<>	su s >20
49	Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode material. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	7
50	Vanadium dioxide nanostructures with remarkable surface-enhanced Raman scattering activity. Chemical Communications, 2021, 57, 4815-4818.	4.1	7
51	Improving Flame Retardancy of Epoxy Resin Nanocomposites by Carbon Nanotubes Grafted CuAl-Layered Double Hydroxide Hybrid. Journal of Nanoscience and Nanotechnology, 2020, 20, 6406-6412.	0.9	6
52	Graphene Oxide Nanocoating Prevents Flame Spread on Polyurethane Sponge. Journal of Nanoscience and Nanotechnology, 2018, 18, 5105-5112.	0.9	5
53	Effect of Graphene Oxide–Modified Cobalt Nickel Phosphate on Flame Retardancy of Epoxy Resin. Frontiers in Materials, 2020, 7, .	2.4	5
54	Hollow N-doped Carbon/Metal Phosphate Structure as Sulfur Host for an Advanced Cathode of Lithium-Sulfur Battery. Chemistry Letters, 2020, 49, 677-680.	1.3	5

#	Article	IF	CITATIONS
55	Co ₃ O ₄ on Fe, N Doped Bio arbon Substrate for Electrocatalysis of Oxygen Reduction. European Journal of Inorganic Chemistry, 2020, 2020, 3869-3876.	2.0	4
56	Biomorphic NiO/Ni with a Regular Poreâ€Array Structure as a Supercapacitor Electrode Material. European Journal of Inorganic Chemistry, 2021, 2021, 562-566.	2.0	4
57	Improved flame-retardant properties of HIPS/ATH system by organo Fe-montmorillonite. Nanomaterials and Energy, 2015, 4, 1-8.	0.2	2
58	Improving Fire Safety of Epoxy Resin with Alkyl Glycoside Modified CuAl-Layered Double Hydroxide. Journal of Nanoscience and Nanotechnology, 2019, 19, 4571-4577.	0.9	1
59	CoSnO ₃ Nanocubes Wrapped by Carbon Nanofibers for Improving Lithiumâ€Sulfur Battery Performances. ChemistrySelect, 2021, 6, 9453-9457.	1.5	1
60	Improved flame-retardant properties of HIPS/ATH system by organo Fe-montmorillonite. Nanomaterials and Energy, 2015, 4, 159-166.	0.2	0
61	In Situ Carbon-coated Ni0.85Se@C Composite with High Performance for Sodium-ion Batteries. Chemistry Letters, 2022, 51, 221-223.	1.3	0