Mehmet Kobya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25231/publications.pdf

Version: 2024-02-01

109 papers 9,509 citations

50244 46 h-index 95 g-index

109 all docs

109 docs citations

109 times ranked 7031 citing authors

#	Article	IF	CITATIONS
1	Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 2005, 96, 1518-1521.	4.8	700
2	Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of Hazardous Materials, 2003, 100, 163-178.	6. 5	610
3	Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal, 2009, 148, 480-487.	6.6	404
4	Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 2004, 37, 117-125.	3.9	366
5	Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water S A, 2004, 30, .	0.2	317
6	Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology, 2004, 91, 317-321.	4.8	311
7	Treatment of the textile wastewater by combined electrocoagulation. Chemosphere, 2006, 62, 181-187.	4.2	300
8	Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2008, 150, 737-746.	6. 5	270
9	Decolorization of Reactive Dye Solutions by Electrocoagulation Using Aluminum Electrodes. Industrial & Engineering Chemistry Research, 2003, 42, 3391-3396.	1.8	269
10	Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 2006, 190, 201-211.	4.0	266
11	Treatment of the textile wastewater by electrocoagulation. Chemical Engineering Journal, 2007, 128, 155-161.	6.6	229
12	Treatment of levafix orange textile dye solution by electrocoagulation. Journal of Hazardous Materials, 2006, 132, 183-188.	6.5	216
13	Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, 2006, 133, 172-176.	6.5	192
14	Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta, 2011, 56, 5060-5070.	2.6	185
15	Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 2002, 84, 291-293.	4.8	177
16	Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresource Technology, 2008, 99, 5368-5373.	4.8	176
17	A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. Journal of Environmental Chemical Engineering, 2013, 1, 989-995.	3.3	167
18	Treatment of the baker's yeast wastewater by electrocoagulation. Journal of Hazardous Materials, 2008, 154, 1133-1140.	6. 5	158

#	Article	IF	CITATIONS
19	Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes. Separation and Purification Technology, 2011, 77, 283-293.	3.9	152
20	Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of Hazardous Materials, 2007, 148, 311-318.	6.5	148
21	Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresource Technology, 2007, 98, 2590-2598.	4.8	144
22	The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2007, 147, 297-306.	6.5	141
23	Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 2016, 101, 87-100.	1.8	138
24	Adsorption, Kinetic and Equilibrium Studies of Cr(VI) by Hazelnut Shell Activated Carbon. Adsorption Science and Technology, 2004, 22, 51-64.	1.5	136
25	Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Chemical Engineering Research and Design, 2017, 105, 79-90.	2.7	133
26	Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. Journal of Hazardous Materials, 2010, 173, 326-334.	6.5	132
27	Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination, 2012, 286, 200-209.	4.0	130
28	A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environmental Technology and Innovation, 2020, 17, 100519.	3.0	120
29	Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 2008, 154, 787-794.	6.5	112
30	Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2020, 87, 18-39.	2.9	110
31	Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater. Separation and Purification Technology, 2006, 51, 404-408.	3.9	108
32	Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study. Chemical Engineering Research and Design, 2018, 116, 34-51.	2.7	106
33	Heavy metal pollution and spatial distribution in surface sediments of MustafakemalpaÅŸa stream located in the world's largest borate basin (Turkey). Chemosphere, 2018, 208, 782-792.	4.2	103
34	Study on the treatment of waste metal cutting fluids using electrocoagulation. Separation and Purification Technology, 2008, 60, 285-291.	3.9	102
35	A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant. Separation and Purification Technology, 2013, 112, 11-19.	3.9	99
36	Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash. Desalination, 2007, 212, 282-293.	4.0	98

#	Article	IF	CITATIONS
37	Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 2018, 123, 65-73.	1.6	96
38	A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Separation and Purification Technology, 2021, 259, 118182.	3.9	95
39	Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types. Electrochimica Acta, 2018, 286, 252-263.	2.6	78
40	Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation. Journal of Water Process Engineering, 2015, 8, 64-74.	2.6	77
41	Optimization of Electrocoagulation Process for the Treatment of Metal Cutting Wastewaters with Response Surface Methodology. Water, Air, and Soil Pollution, 2011, 215, 399-410.	1.1	7 5
42	Treatment of cadmium and nickel electroplating rinse water by electrocoagulation. Environmental Technology (United Kingdom), 2010, 31, 1471-1481.	1.2	74
43	Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Alâ€Fe plate electrodes. Environmental Progress and Sustainable Energy, 2014, 33, 131-140.	1.3	7 3
44	Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. Journal of Environmental Chemical Engineering, 2016, 4, 1484-1494.	3.3	57
45	Arsenic removal from groundwater of Sivas-ÅžarkiÅŸla Plain, Turkey by electrocoagulation process: Comparing with iron plate and ball electrodes. Journal of Environmental Chemical Engineering, 2015, 3, 1096-1106.	3.3	53
46	Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Water Science and Technology, 2009, 60, 2261-2270.	1.2	52
47	Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions. Separation and Purification Technology, 2014, 133, 246-253.	3.9	50
48	Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere, 2021, 263, 128253.	4.2	45
49	Graphene-based ZnCr layered double hydroxide nanocomposites as bactericidal agents with high sonophotocatalytic performances for degradation of rifampicin. Chemosphere, 2022, 286, 131740.	4.2	44
50	Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: optimisation of operating parameters using central composite design. Coloration Technology, 2014, 130, 226-235.	0.7	43
51	Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes. Chemical Engineering Research and Design, 2019, 121, 20-31.	2.7	42
52	Kinetic analysis of coupled transport of thiocyanate ions through liquid membranes at different temperatures. Journal of Membrane Science, 1997, 130, 7-15.	4.1	40
53	Removal of thiocyanate from aqueous solutions by ion exchange. Journal of Hazardous Materials, 2009, 166, 1367-1376.	6.5	40
54	Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater: Role of operative parameters and mechanistic study. Chemosphere, 2020, 255, 127014.	4.2	37

#	Article	lF	Citations
55	Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalination and Water Treatment, 2013, 51, 6676-6687.	1.0	36
56	Treatments of alkaline non-cyanide, alkaline cyanide and acidic zinc electroplating wastewaters by electrocoagulation. Chemical Engineering Research and Design, 2017, 105, 373-385.	2.7	35
57	Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment. Chemosphere, 2020, 251, 126363.	4.2	35
58	Synthesis of g-C3N4@CuMOFs nanocomposite with superior peroxidase mimetic activity for the fluorometric measurement of glucose. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 28-36.	2.0	34
59	Treatment of coking wastewater by aeration assisted electrochemical oxidation process at controlled and uncontrolled initial pH conditions. Separation and Purification Technology, 2020, 248, 117043.	3.9	33
60	High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process. Chemosphere, 2022, 287, 132370.	4.2	32
61	An evaluation on different origins of natural organic matters using various anodes by electrocoagulation. Chemosphere, 2015, 125, 108-114.	4.2	31
62	Peroxydisulfate activation by in-situ synthesized Fe3O4 nanoparticles for degradation of atrazine: Performance and mechanism. Separation and Purification Technology, 2020, 247, 116925.	3.9	30
63	Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology. Separation Science and Technology, 2019, 54, 775-785.	1.3	27
64	Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor. Journal of Environmental Chemical Engineering, 2020, 8, 103526.	3.3	27
65	Arsenite and arsenate removals from groundwater by electrocoagulation using iron ball anodes: Influence of operating parameters. Journal of Water Process Engineering, 2017, 18, 83-91.	2.6	25
66	Combined effects of co-existing anions on the removal of arsenic from groundwater by electrocoagulation process: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 2017, 5, 3792-3802.	3.3	24
67	Electrocoagulation of azo dye production wastewater with iron electrodes: process evaluation by multiâ€response central composite design. Coloration Technology, 2009, 125, 234-241.	0.7	23
68	Radioisotope X-ray fluorescence analysis of some elements in fly ash of Afsin-Elbistan power plants. Journal of Radioanalytical and Nuclear Chemistry, 1996, 203, 119-123.	0.7	22
69	Effect of operational parameters on the removal of phenol from aqueous solutions by electrocoagulation using Fe and Al electrodes. Desalination and Water Treatment, 2012, 46, 366-374.	1.0	22
70	Zinc-chromium layered double hydroxides anchored on carbon nanotube and biochar for ultrasound-assisted photocatalysis of rifampicin. Ultrasonics Sonochemistry, 2022, 82, 105875.	3.8	22
71	The application of electrocoagulation process for treatment of the red mud dam wastewater from Bayer $\hat{a} \in \mathbb{R}^{M}$ s process. Journal of Environmental Chemical Engineering, 2014, 2, 2211-2220.	3.3	21
72	Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes. Desalination and Water Treatment, 2015, 56, 1191-1201.	1.0	21

#	Article	IF	CITATIONS
73	Removal of humic acid by fixed-bed electrocoagulation reactor: Studies on modelling, adsorption kinetics and HPSEC analyses. Journal of Electroanalytical Chemistry, 2017, 804, 199-211.	1.9	21
74	Decolourization of melanoidins by a electrocoagulation process using aluminium electrodes. Environmental Technology (United Kingdom), 2012, 33, 2429-2438.	1.2	20
75	Phosphorous removal from anaerobically digested municipal sludge centrate by an electrocoagulation reactor using metal (Al, Fe and Al-Fe) scrap anodes. Chemical Engineering Research and Design, 2021, 152, 188-200.	2.7	20
76	Treatment of Baker's Yeast Wastewater by Electrocoagulation and Evaluation of Molecular Weight Distribution with HPSEC. Separation Science and Technology, 2013, 48, 2880-2889.	1.3	19
77	Influence of arsenic and boron on the water quality index in mining stressed catchments of Emet and Orhaneli streams (Turkey). Environmental Monitoring and Assessment, 2019, 191, 199.	1.3	19
78	Ammonia removal from wastewater by air stripping and recovery struvite and calcium sulphate precipitations from anesthetic gases manufacturing wastewater. Journal of Water Process Engineering, 2020, 38, 101641.	2.6	19
79	Electrochemical treatment of Baker's yeast wastewater containing melanoidin: optimization through response surface methodology. Water Science and Technology, 2012, 65, 2183-2190.	1.2	18
80	Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules, 2021, 26, 395.	1.7	18
81	Removal of As(V) from groundwater by a new electrocoagulation reactor using Fe ball anodes: optimization of operating parameters. Desalination and Water Treatment, 2015, 56, 1177-1190.	1.0	17
82	Cyanide ions transport from aqueous solutions by using quaternary ammonium salts through bulk liquid membranes. Desalination, 2005, 180, 139-150.	4.0	16
83	Elemental analysis of trace elements in fly ash sample of YataÄŸan thermal power plants using EDXRF. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 146-150.	1.1	16
84	Decolorisation of aqueous reactive dye Remazol Red 3B by electrocoagulation. Coloration Technology, 2010, 126, 282-288.	0.7	16
85	Removal of aqueous cyanide with strongly basic ion-exchange resin. Environmental Technology (United Kingdom), 2015, 36, 1612-1622.	1.2	15
86	Optimization of Beidellite/Polyaniline Production Conditions by Central Composite Design for Removal of Acid Yellow 194. Journal of Polymers and the Environment, 2018, 26, 2619-2631.	2.4	15
87	Analysis of Titanium and Zirconium in Red Mud With Energy Dispersive X-Ray Spectrometry. Instrumentation Science and Technology, 1996, 24, 277-282.	0.9	14
88	X-RAY FLUORESCENCE SPECTROMETRY ANALYSIS OF TRACE ELEMENTS IN FLY ASH SAMPLES OF YENIKOY THERMAL POWER PLANTS. Instrumentation Science and Technology, 2001, 29, 433-439.	0.9	13
89	A mathematical modeling of sulphur dioxide pollution in Erzurum City. Environmental Pollution, 2002, 118, 411-417.	3.7	12
90	Modeling and optimization of acid dye manufacturing wastewater treatment with Fenton's reagent: comparison with electrocoagulation treatment results and effects on activated sludge inhibition. Water Science and Technology, 2010, 62, 209-216.	1.2	12

#	Article	IF	CITATIONS
91	Adsorption Kinetic Models Applied to Nickel Ions on Hazelnut Shell Activated Carbons. Adsorption Science and Technology, 2002, 20, 179-188.	1.5	11
92	Modelling the Effects of Adsorbent Dose and Particle Size on the Adsorption of Cr(VI) Ions from Aqueous Solutions. Adsorption Science and Technology, 2004, 22, 583-594.	1.5	11
93	Removal of arsenate by electrocoagulation reactor using aluminum ball anode electrodes. Water Practice and Technology, 2018, 13, 753-763.	1.0	10
94	Removal of natural organic matter from Lake Terkos by EC process: Studying on removal mechanism by floc size and zeta potential measurement and characterization by HPSEC method. Journal of Water Process Engineering, 2019, 31, 100831.	2.6	10
95	Effects of stirring speed on coupled transport of nitrate ions through liquid membranes. Bioprocess and Biosystems Engineering, 2000, 22, 0309-0314.	1.7	8
96	Adsorption Kinetics for the Removal of Nitrite Ions from Aqueous Solutions by an Ion-Exchange Resin. Adsorption Science and Technology, 2006, 24, 131-142.	1.5	8
97	Effect of carrier type on coupled transport kinetics of thiocyanate ions through liquid membranes. Desalination, 2004, 160, 253-262.	4.0	7
98	Non-steady-state kinetic analysis of coupled transport of thiocyanate ions through binary liquid membranes. Desalination, 2005, 175, 237-246.	4.0	7
99	Coupled transport of cyanide ions through liquid membranes. Water Science and Technology, 2000, 41, 125-133.	1.2	6
100	Kinetic analysis of coupled transport of nitrite ions through liquid membranes at different temperatures. Filtration and Separation, 2000, 37, 51-56.	0.2	6
101	Treatment of phenol formaldehyde production wastewater by electrooxidation-electrofenton successive processes. Separation Science and Technology, 2020, 55, 2830-2843.	1.3	6
102	How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?. Science of the Total Environment, 2022, 808, 152135.	3.9	6
103	A study of inline chemical coagulation/precipitation-ceramic microfiltration and nanofiltration for reverse osmosis concentrate minimization and reuse in the textile industry. Water Science and Technology, 2021, 84, 2457-2471.	1.2	5
104	Anodic Oxidation of Effluents from Stages of MBR-UF Municipal Landfill Leachate Treatment Plant. Environmental Engineering Science, 2020, 37, 702-714.	0.8	4
105	Polyaniline-coated charcoal ash: a novel high-capacity adsorbent for removal of thiocyanate ions from aqueous solutions. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	1.8	4
106	Acid production potentials of massive sulfide minerals and lead–zinc mine tailings: a medium-term study. Water Science and Technology, 2018, 77, 260-268.	1.2	2
107	OPTIMIZATION OF SOME CATIONS FOR REMOVAL OF ARSENIC FROM GROUNDWATER BY ELECTROCOAGULATION PROCESS. Environmental Engineering and Management Journal, 2018, 17, 1079-1093.	0.2	2
108	Optimisation of preparation of hazelnut shell activated carbon for adsorption of Cr (III). Journal of Environmental Engineering and Science, 0 , 1 -8.	0.3	0

#	Article	IF	CITATIONS
109	Electrooxidation of Alkyd Resin Production Wastewater By Boren Doped Diamond Electrode. Academic Perspective Procedia, 2018, 1, 1026-1033.	0.0	0