Gediminas Cepinskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2522853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and Profiling of Human Coronavirus Immunoglobulins in Critically III Coronavirus Disease 2019 Patients. , 2021, 3, e0369.		8
2	National Preclinical Sepsis Platform: developing a framework for accelerating innovation in Canadian sepsis research. Intensive Care Medicine Experimental, 2021, 9, 14.	0.9	5
3	Case Report: Inflammation and Endothelial Injury Profiling of COVID-19 Pediatric Multisystem Inflammatory Syndrome (MIS-C). Frontiers in Pediatrics, 2021, 9, 597926.	0.9	15
4	Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses. Pathophysiology, 2021, 28, 212-223.	1.0	7
5	A Proteinase 3 Contribution to Juvenile Idiopathic Arthritis-Associated Cartilage Damage. Pathophysiology, 2021, 28, 320-327.	1.0	0
6	Proteinase 3 contributes to endothelial dysfunction in an experimental model of sepsis. Experimental Biology and Medicine, 2021, 246, 2338-2345.	1.1	3
7	Metabolomics Profiling of Critically Ill Coronavirus Disease 2019 Patients: Identification of Diagnostic and Prognostic Biomarkers. , 2020, 2, e0272.		92
8	Novel Outcome Biomarkers Identified With Targeted Proteomic Analyses of Plasma From Critically III Coronavirus Disease 2019 Patients. , 2020, 2, e0189.		44
9	Endothelial Injury and Glycocalyx Degradation in Critically Ill Coronavirus Disease 2019 Patients: Implications for Microvascular Platelet Aggregation. , 2020, 2, e0194.		99
10	Inflammation Profiling of Critically Ill Coronavirus Disease 2019 Patients. , 2020, 2, e0144.		69
11	Transcriptional profiling of leukocytes in critically ill COVID19 patients: implications for interferon response and coagulation. Intensive Care Medicine Experimental, 2020, 8, 75.	0.9	37
12	Carbon monoxideâ€releasing moleculeâ€3 (<scp>CORM</scp> â€3) offers protection in an in vitro model of compartment syndrome. Microcirculation, 2019, 26, e12577.	1.0	7
13	CORM-401 Reduces Ischemia Reperfusion Injury in an Ex Vivo Renal Porcine Model of the Donation After Circulatory Death. Transplantation, 2018, 102, 1066-1074.	0.5	32
14	Systemic Administration of Carbon Monoxide–Releasing Molecule-3 Protects the Skeletal Muscle in Porcine Model of Compartment Syndrome. Critical Care Medicine, 2018, 46, e469-e472.	0.4	8
15	Carbon monoxide-releasing molecule, CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology, 2018, 26, 435-445.	1.9	18
16	Systemic application of carbon monoxide-releasing molecule 3 protects skeletal muscle from ischemia-reperfusion injury. Journal of Vascular Surgery, 2017, 66, 1864-1871.	0.6	10
17	Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Research in Cardiology, 2017, 112, 16.	2.5	76
18	Carbon Monoxide–Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. American Journal of Pathology, 2017, 187, 1121-1133.	1.9	9

GEDIMINAS CEPINSKAS

#	Article	IF	CITATIONS
19	Elevated Leukocyte Azurophilic Enzymes in Human Diabetic Ketoacidosis Plasma Degrade Cerebrovascular Endothelial Junctional Proteins*. Critical Care Medicine, 2016, 44, e846-e853.	0.4	20
20	Dynamic regulation of plasma matrix metalloproteinases in human diabetic ketoacidosis. Pediatric Research, 2016, 79, 295-300.	1.1	14
21	Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E370-E379.	1.8	5
22	Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro. Critical Care, 2015, 19, 149.	2.5	19
23	Pretreatment of Human Cerebrovascular Endothelial Cells with <scp>CO</scp> â€releasing Moleculeâ€3 Interferes with <scp>JNK</scp> / <scp>AP</scp> â€l Signaling and Suppresses <scp>LPS</scp> â€induced Proadhesive Phenotype. Microcirculation, 2015, 22, 28-36.	1.0	17
24	Early mobilization in the critical care unit: A review of adult and pediatric literature. Journal of Critical Care, 2015, 30, 664-672.	1.0	203
25	Diabetic Ketoacidosis Alters Plasma Levels of Matrix Metalloproteinases and PMNâ€Specific Elastase in Children. FASEB Journal, 2015, 29, 927.5.	0.2	0
26	Modulating Neutrophilâ€Derived MPOâ€Endothelial Surface Binding with CORMs. FASEB Journal, 2015, 29, 418.9.	0.2	1
27	Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovascular Diabetology, 2014, 13, 88.	2.7	55
28	The Severity of Microvascular Dysfunction Due to Compartment Syndrome Is Diminished by the Systemic Application of CO-Releasing Molecule-3. Journal of Orthopaedic Trauma, 2014, 28, e263-e268.	0.7	15
29	Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction. Free Radical Biology and Medicine, 2014, 70, 167-173.	1.3	36
30	Anti-inflammatory Effects of Carbon Monoxide-Releasing Molecule on Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Digestive Diseases and Sciences, 2014, 59, 1142-1151.	1.1	30
31	CXCL1/CXCL8 (GROα/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1077-E1084.	1.8	43
32	Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience, 2014, 274, 1-10.	1.1	13
33	CORMâ€3 derived CO suppresses NLRP3 inflammasome in cardiac fibroblasts and protects cardiomyocytes from apoptosis in mice with sepsis (1096.6). FASEB Journal, 2014, 28, 1096.6.	0.2	0
34	Modulating myeloperoxidaseâ€induced endothelial damage by a carbon monoxideâ€releasing molecule, CORMâ€3 (146.9). FASEB Journal, 2014, 28, 146.9.	0.2	0
35	Carbon Monoxide Releasing Molecules Inhibit Cell Death Resulting from Renal Transplantation Related Stress. Journal of Urology, 2013, 190, 772-778.	0.2	38
36	Mechanisms and consequences of acquired brain injury during development. Pathophysiology, 2013, 20, 49-57.	1.0	27

GEDIMINAS CEPINSKAS

#	Article	IF	CITATIONS
37	Diabetic Ketoacidosis Elicits Systemic Inflammation Associated with Cerebrovascular Endothelial Cell Dysfunction. Microcirculation, 2013, 20, 534-543.	1.0	48
38	Translational Research in Pediatrics II: Blood Collection, Processing, Shipping, and Storage. Pediatrics, 2013, 131, 754-766.	1.0	59
39	Concussive injury elicits human cerebrovascular endothelial cell activation in vitro. FASEB Journal, 2013, 27, 650.10.	0.2	Ο
40	Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. Journal of Trauma, 2012, 72, 1194-1201.	2.3	27
41	The Effect of Tidal Volume on Systemic Inflammation in Acid-Induced Lung Injury. Respiration, 2011, 81, 333-342.	1.2	15
42	Carbon monoxide-releasing molecules protect against ischemia–reperfusion injury during kidney transplantation. Kidney International, 2011, 79, 1080-1089.	2.6	85
43	Anti-α4β1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes. Inflammation Research, 2010, 59, 647-657.	1.6	9
44	Carbon Monoxide Liberated from CO-Releasing Molecule (CORM-2) Attenuates Ischemia/Reperfusion (I/R)-Induced Inflammation in the Small Intestine. Inflammation, 2010, 33, 92-100.	1.7	74
45	Carbon monoxide-releasing molecule CORM-3 suppresses vascular endothelial cell SOD-1/SOD-2 activity while up-regulating the cell surface levels of SOD-3 in a heparin-dependent manner. Free Radical Biology and Medicine, 2010, 49, 1534-1541.	1.3	16
46	Hindlimb Ischemia/Reperfusion-Induced Remote Injury to the Small Intestine: Role of Inducible Nitric-Oxide Synthase-Derived Nitric Oxide. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 919-927.	1.3	18
47	CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H920-H929.	1.5	53
48	Mediators Released from LPSâ€challenged Lungs into Circulation Induce the Inflammatory Response in Liver Vascular Endothelial Cells. FASEB Journal, 2009, 23, 741.7.	0.2	0
49	Dextran sulfate sodium-induced acute colonic inflammation in angiotensin II type 1a receptor deficient mice. Inflammation Research, 2008, 57, 84-91.	1.6	46
50	Human neutrophil–pulmonary microvascular endothelial cell interactions in vitro: Differential effects of nitric oxide vs. peroxynitrite. Microvascular Research, 2008, 76, 80-88.	1.1	22
51	Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. American Journal of Physiology - Renal Physiology, 2008, 294, G184-G191.	1.6	115
52	Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1712-H1719.	1.5	83
53	Inflammatory Response in Microvascular Endothelium in Sepsis: Role of Oxidants. Journal of Clinical Biochemistry and Nutrition, 2008, 42, 175-184.	0.6	78
54	Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Microvascular Research, 2007, 74, 23-31.	1.1	30

GEDIMINAS CEPINSKAS

#	Article	IF	CITATIONS
55	Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World Journal of Gastroenterology, 2007, 13, 6183.	1.4	23
56	Role of iNOSâ€derived nitric oxide (NO) on hind limb ischemia/reperfusion (I/R)â€induced remote injury to the gut. FASEB Journal, 2007, 21, A1219.	0.2	1
57	Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions. Microvascular Research, 2006, 71, 40-47.	1.1	32
58	Inflammatory Response In The Small Intestine Induced By Hind Limb Ischemia/Reperfusion (I/R): Role of iNOS. FASEB Journal, 2006, 20, A1083.	0.2	1
59	Cardiac Myocytes Activated by Septic Plasma Promote Neutrophil Transendothelial Migration. Circulation Research, 2004, 94, 944-951.	2.0	50
60	Tumor Necrosis Factor-α-Induced Cytokine-Induced Neutrophil Chemoattractant-1 (CINC-1) Production by Rat Gastric Epithelial Cells: Role of Reactive Oxygen Species and Nuclear Factor-κB. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 670-676.	1.3	60
61	Neutrophils Induce Sequential Focal Changes in Endothelial Adherens Junction Components: Role of Elastase. Microcirculation, 2003, 10, 205-220.	1.0	36
62	Regulation of intestinal nuclear factor-κB activity and E-selectin expression during sepsis: A role for peroxynitrite. Gastroenterology, 2003, 124, 118-128.	0.6	34
63	PMN transendothelial migration decreases nuclear NFκB in IL-1β–activated endothelial cells. Journal of Cell Biology, 2003, 161, 641-651.	2.3	51
64	Delayed preconditioning in cardiac myocytes with respect to development of a proinflammatory phenotype: role of SOD and NOS. Cardiovascular Research, 2003, 59, 901-911.	1.8	25
65	Neutrophils Induce Sequential Focal Changes in Endothelial Adherens Junction Components: Role of Elastase. Microcirculation, 2003, 10, 205-220.	1.0	1
66	Interaction between reactive oxygen metabolites and nitric oxide in oxidant tolerance1,2 1This article is part of a series of reviews on "Vascular Dysfunction and Free Radicals.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Toshikazu Yoshikawa. Free Radical Biology and Medicine, 2002, 33, 433-440.	1.3	36
67	Cardiac myocytes exposed to anoxia-reoxygenation promote neutrophil transendothelial migration. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H440-H447.	1.5	42
68	Endothelial E- and P-selectin expression in iNOS- deficient mice exposed to polymicrobial sepsis. American Journal of Physiology - Renal Physiology, 2001, 280, G291-G297.	1.6	28
69	Peritonitis induces rat cardiac myocytes to promote polymorphonuclear leukocyte emigration and activate endothelial cells: Effect of lipopolysaccharide pretreatment. Critical Care Medicine, 2001, 29, 1774-1779.	0.4	8
70	Neutrophil-endothelial cell interactions during the development of tolerance to ischaemia/reperfusion in isolated cells. Acta Physiologica Scandinavica, 2001, 173, 23-33.	2.3	8
71	Nitric Oxide Attenuates but Superoxide Enhances iNOS Expression in Endotox in―and IFN _γ ‣timulated Skeletal Muscle Endothelial Cells. Microcirculation, 2001, 8, 415-425.	1.0	23
72	Nitric Oxide Attenuates but Superoxide Enhances iNOS Expression in Endotox in- and IFN _{Ĵ3} -Stimulated Skeletal Muscle Endothelial Cells. Microcirculation, 2001, 8, 415-425.	1.0	2

#	Article	IF	CITATIONS
73	True. Microcirculation, 2001, 8, 415-425.	1.0	8
74	Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Critical Care Medicine, 2000, 28, 1865-1870.	0.4	81
75	LPS tolerance in human endothelial cells: reduced PMN adhesion, E-selectin expression, and NF-κB mobilization. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H853-H861.	1.5	68
76	LPS pretreatment ameliorates peritonitis-induced myocardial inflammation and dysfunction: role of myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H885-H892.	1.5	38
77	Anoxia/Reoxygenation-Induced Tolerance With Respect to Polymorphonuclear Leukocyte Adhesion to Cultured Endothelial Cells. Circulation Research, 1999, 84, 103-112.	2.0	51
78	Epithelial and mast cell products differentially modulate migration of epithelial cells in wounded monolayers. Pathophysiology, 1999, 5, 263-270.	1.0	1
79	Cellular mechanisms of acute versus delayed preconditioning. Pathophysiology, 1998, 5, 35-48.	1.0	24
80	Transendothelial Neutrophil Migration. Circulation Research, 1997, 81, 618-626.	2.0	66
81	Aspirin-induced, neutrophil-mediated injury to vascular endothelium. Inflammation, 1995, 19, 297-312.	1.7	23
82	Helicobacter pylori-induced microvascular protein leakage in rats: Role of neutrophils, mast cells, and platelets. Gastroenterology, 1994, 107, 70-79.	0.6	131
83	Endothelial Glycocalyx Degradation in Critical Illness and Injury. Frontiers in Medicine, 0, 9, .	1.2	23