Kalyan C Mutyala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2522527/publications.pdf

Version: 2024-02-01

840776 1058476 14 459 11 14 citations h-index g-index papers 14 14 14 380 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances, 2021, 9, 100133.	5.2	44
2	Towards developing robust solid lubricant operable in multifarious environments. Scientific Reports, 2020, 10, 15390.	3.3	28
3	Superlubricity in rolling/sliding contacts. Applied Physics Letters, 2019, 115, .	3.3	22
4	Rolling Contact Performance of a Ti-Containing MoS2 Coating Operating Under Ambient, Vacuum, and Oil-Lubricated Conditions. Coatings, 2019, 9, 752.	2.6	8
5	Ironâ€Nanoparticle Driven Tribochemistry Leading to Superlubric Sliding Interfaces. Advanced Materials Interfaces, 2019, 6, 1901416.	3.7	41
6	Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon, 2019, 146, 524-527.	10.3	108
7	Effect of deposition method on tribological performance and corrosion resistance characteristics of CrxN coatings deposited by physical vapor deposition. Thin Solid Films, 2017, 636, 232-239.	1.8	11
8	An atom probe tomography investigation of Ti–MoS2 and MoS2–Sb2O3–Au films. Journal of Materials Research, 2017, 32, 1710-1717.	2.6	6
9	Effect of deposition method on the RCF performance of $Cr \times N$ thin film ball coatings. Surface and Coatings Technology, 2016, 305, 176-183.	4.8	9
10	Effect of Diamond-Like Carbon Coatings on Ball Bearing Performance in Normal, Oil-Starved, and Debris-Damaged Conditions. Tribology Transactions, 2016, 59, 1039-1047.	2.0	18
11	Influence of MoS2 on the Rolling Contact Performance of Bearing Steels in Boundary Lubrication: A Different Approach. Tribology Letters, 2016, 61, 1.	2.6	29
12	Deposition, characterization, and performance of tribological coatings on spherical rolling elements. Surface and Coatings Technology, 2015, 284, 302-309.	4.8	26
13	Tribological Performance and Coating Characteristics of Sputter-Deposited Ti-Doped MoS ₂ in Rolling and Sliding Contact. Tribology Transactions, 2015, 58, 767-777.	2.0	60
14	An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surface and Coatings Technology, 2015, 284, 281-289.	4.8	49