
Nick Pellens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/252203/publications.pdf Version: 2024-02-01

NICK PELLENS

#	Article	IF	CITATIONS
1	HSIL-Based Synthesis of Ultracrystalline K,Na-JBW, a Zeolite Exhibiting Exceptional Framework Ordering and Flexibility. Chemistry of Materials, 2022, 34, 7159-7166.	6.7	5
2	Ion-Pairs in Aluminosilicate-Alkali Synthesis Liquids Determine the Aluminum Content and Topology of Crystallizing Zeolites. Chemistry of Materials, 2022, 34, 7150-7158.	6.7	13
3	Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. Chemistry of Materials, 2022, 34, 7139-7149.	6.7	11
4	Using Moving Electrode Impedance Spectroscopy to Monitor Particle Sedimentation. IEEE Sensors Journal, 2021, 21, 9636-9641.	4.7	5
5	Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis. Materials Horizons, 2021, 8, 2576-2583.	12.2	16
6	Moving Electrode Impedance Spectroscopy for Accurate Conductivity Measurements of Corrosive Ionic Media. ACS Sensors, 2020, 5, 3392-3397.	7.8	9
7	Monitoring Particle Sedimentation in Conductive Suspensions with Moving Electrode Impedance Spectroscopy. , 2019, , .		1
8	Understanding crystal nucleation mechanisms: where do we stand? General discussion. Faraday Discussions, 0, 235, 219-272.	3.2	13