List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2521560/publications.pdf Version: 2024-02-01

Ιινι-Τλο Υμ

#	Article	IF	CITATIONS
1	Cyanomethylative cyclization of unactivated alkenes with nitriles for the synthesis of cyano-containing ring-fused quinazolin-4(3 <i>H</i>)-ones. New Journal of Chemistry, 2022, 46, 1347-1352.	2.8	18
2	Rh(III)â€Catalyzed Câ^'H Activation/Annulation of <i>N</i> â€Methyl Arylhydrazines with Iodonium Ylides toward Ringâ€fused Cinnolines. Asian Journal of Organic Chemistry, 2022, 11, e202100809.	2.7	9
3	Radical Polychloromethylation/Cyclization of Unactivated Alkenes: Access to Polychloromethyl‧ubstituted Ringâ€Fused Quinazolinones. Advanced Synthesis and Catalysis, 2022, 364, 1085-1090.	4.3	28
4	Three-component synthesis of arylsulfonyl-substituted indolo[2,1- <i>a</i>]isoquinolinones and benzimidazo-[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones by SO ₂ insertion and radical cascade cyclization. Organic and Biomolecular Chemistry, 2022, 20, 3067-3071.	2.8	10
5	Rhodiumâ€Catalyzed Câ^'H Activation/Annulation of <i>N</i> â€Arylâ€pyrazolidinones with Vinylene Carbonate. European Journal of Organic Chemistry, 2022, 2022, .	2.4	10
6	Metal-free polychloromethyl radical-initiated cyclization of unactivated <i>N</i> -allylindoles towards pyrrolo[1,2- <i>a</i>]indoles. Organic and Biomolecular Chemistry, 2022, 20, 5259-5263.	2.8	15
7	Rh(III)â€Catalyzed C6â€Selective Câ^'H 3â€Oxoalkylation of 2â€Pyridones with Allylic Alcohols. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	1
8	Recent Advances in Polychloromethylation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 305-327.	4.3	35
9	Iridium-catalyzed selective ortho C H carbenoid functionalization of N-aryl-7-azaindoles with diazotized Meldrum's acid. Tetrahedron Letters, 2021, 62, 152703.	1.4	6
10	Peroxide-mediated synthesis of benzimidazo[2,1-a]isoquinoline-6(5H)-ones via cascade methylation/ethylation and intramolecular cyclization. Organic and Biomolecular Chemistry, 2021, 19, 619-626.	2.8	26
11	Diacyl peroxides: practical reagents as aryl and alkyl radical sources. Chemical Communications, 2021, 57, 6707-6724.	4.1	31
12	Recent advances in rhodium-catalyzed C(sp ²)–H (hetero)arylation. Organic and Biomolecular Chemistry, 2021, 19, 8442-8465.	2.8	16
13	Rh ^{III} â€Catalyzed C6â€Selective Oxidative Câ^H/Câ^H Crosscoupling of 2â€Pyridones with Thiophenes. Chemistry - A European Journal, 2021, 27, 12294-12299.	3.3	8
14	Molecular Oxygenâ€Mediated Radical Cyclization of Acrylamides with Boronic Acids. Advanced Synthesis and Catalysis, 2021, 363, 4889-4893.	4.3	22
15	Metalâ€Free Hydroxyalkylative Radical Addition/Cyclization of Unactivated Alkenes for the Synthesis of Hydroxyalkylated Ringâ€Fused Quinazolinones. European Journal of Organic Chemistry, 2021, 2021, 5382-5385.	2.4	13
16	Rhodium-catalyzed directed C–H functionalization of 2-arylindazoles with diazotized Meldrum's acid. Journal of Organometallic Chemistry, 2021, 951, 122009.	1.8	5
17	DTBP-promoted site-selective α-alkoxyl C–H functionalization of alkyl esters: synthesis of 2-alkyl ester substituted chromanones. Organic and Biomolecular Chemistry, 2021, 19, 4520-4528.	2.8	3
18	Rhodium-catalyzed C–H activation/cyclization of aryl sulfoximines with iodonium ylides towards polycyclic 1,2-benzothiazines. Organic and Biomolecular Chemistry, 2021, 19, 10085-10089.	2.8	11

#	Article	IF	CITATIONS
19	Alkylarylation of N-allylbenzamides and N-allylanilines with simple ethers for the direct construction of ether substituted dihydroisoquinolinones and indolines. Organic and Biomolecular Chemistry, 2020, 18, 650-654.	2.8	6
20	Cascade arylchloromethylation of unactivated alkenes for the construction of chloromethyl substituted dihydroisoquinolinones. Tetrahedron Letters, 2020, 61, 151499.	1.4	13
21	Rh(<scp>iii</scp>)-Catalyzed sequential <i>ortho</i> -C–H oxidative arylation/cyclization of sulfoxonium ylides with quinones toward 2-hydroxy-dibenzo[<i>b,d</i>]pyran-6-ones. Chemical Communications, 2020, 56, 6688-6691.	4.1	35
22	Rh(<scp>iii</scp>)-Catalyzed regioselective C4 alkylation of indoles with allylic alcohols: direct access to β-indolyl ketones. Organic and Biomolecular Chemistry, 2020, 18, 3038-3042.	2.8	21
23	Visible-Light-Driven Palladium-Catalyzed Oxy-Alkylation of 2-(1-Arylvinyl)anilines by Unactivated Alkyl Bromides and CO ₂ : Multicomponent Reactions toward 1,4-Dihydro-2 <i>H</i> -3,1-benzoxazin-2-ones. Organic Letters, 2019, 21, 6579-6583.	4.6	51
24	The Silver-Promoted Phosphonation/Alkynylation of Alkene Proceeding with Radical 1,2-Alkynyl Migration. Journal of Organic Chemistry, 2019, 84, 11177-11185.	3.2	17
25	Rhodium-Catalyzed Reaction of Sulfoxonium Ylides and Anthranils toward Indoloindolones via a (4 +) Tj ETQq1	1 0.784314 4.6	rgBT /Overla
26	Copper-catalyzed acylation of pyrazolones with aldehydes to afford 4-acylpyrazolones. Organic and Biomolecular Chemistry, 2019, 17, 7552-7557.	2.8	10
27	Cascade arylalkylation of unactivated alkenes for the construction of cyanomethyl-substituted dihydroisoquinolinones and indolines. Catalysis Communications, 2019, 131, 105802.	3.3	8
28	Copper-Catalyzed Cascade Denitrogenative Transannulation/Hydrolyzation of 3-Aminoindazoles toward 2,2-Disubstituted Indanones. Journal of Organic Chemistry, 2019, 84, 15669-15676.	3.2	12
29	Rhodium-catalyzed C–H activation/annulation of amidines with 4-diazoisochroman-3-imines toward isochromeno[3,4- <i>c</i>]isoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 8417-8424.	2.8	24
30	Synthesis of dihydroquinolinones <i>via</i> iridium-catalyzed cascade C–H amidation and intramolecular aza-Michael addition. Chemical Communications, 2019, 55, 1915-1918.	4.1	12
31	The Reaction of o â€Aminoacetophenone N â€Tosylhydrazone and CO 2 toward 1,4â€Dihydroâ€2 H â€3,1â€benzoxazinâ€2â€ones. Advanced Synthesis and Catalysis, 2019, 361, 3538-3542.	4.3	17
32	Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines. Organic Letters, 2019, 21, 2565-2568.	4.6	20
33	Rhodium(III)-catalyzed direct C-7 sulfonamidation and amination of indolines with arylsulfonamides and trifluoroacetamide. Tetrahedron Letters, 2019, 60, 1349-1352.	1.4	10
34	Palladium/copper-catalyzed multicomponent reactions of propargylic amides, halohydrocarbons and CO ₂ toward functionalized oxazolidine-2,4-diones. Chemical Communications, 2019, 55, 13685-13688.	4.1	18
35	Copper-Mediated Direct Cyanation of Heteroarene and Arene C–H Bonds by the Combination of Ammonium and DMF. Organic Letters, 2019, 21, 9919-9923.	4.6	32
36	Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations. Synlett, 2019, 30, 21-29.	1.8	84

#	Article	IF	CITATIONS
37	Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes. Organic and Biomolecular Chemistry, 2018, 16, 3568-3571.	2.8	9
38	Site-specific hydroxyalkylation of chromones via alcohol mediated Minisci-type radical conjugate addition. Organic and Biomolecular Chemistry, 2018, 16, 1823-1827.	2.8	19
39	Palladium-catalyzed CO-free cyclizative carbonylation of 2-benzylpyridines leading to pyridoisoquinolinones. Organic Chemistry Frontiers, 2018, 5, 962-966.	4.5	23
40	Rhodium-catalyzed C7-alkylation of indolines with maleimides. Organic and Biomolecular Chemistry, 2018, 16, 693-697.	2.8	41
41	Iridium-catalyzed C–H phosphoramidation of <i>N</i> -aryl-7-azaindoles with phosphoryl azides. Organic and Biomolecular Chemistry, 2018, 16, 3711-3715.	2.8	15
42	Rh(<scp>iii</scp>)-Catalyzed dual C–H functionalization of 3-(1 <i>H</i> -indol-3-yl)-3-oxopropanenitriles with sulfoxonium ylides or diazo compounds toward polysubstituted carbazoles. Organic and Biomolecular Chemistry, 2018, 16, 8715-8718.	2.8	22
43	Rhodium-Catalyzed Site-Selective <i>ortho</i> -C–H Activation: Enone Carbonyl Directed Hydroarylation of Maleimides. Journal of Organic Chemistry, 2018, 83, 12086-12093.	3.2	25
44	Metal-free radical cascade chloromethylation of unactivated alkenes: synthesis of polychloro-substituted indolines. Organic and Biomolecular Chemistry, 2018, 16, 5752-5755.	2.8	30
45	Metal-free oxidative radical cascade addition/oxobutylation of unactivated alkenes with acetone towards 3-(3-oxobutyl)indolines. Organic and Biomolecular Chemistry, 2018, 16, 6035-6038.	2.8	17
46	Carbon annulation of ortho-vinylanilines with dimethyl sulfoxide to access 4-aryl quinolines. Organic and Biomolecular Chemistry, 2017, 15, 1334-1337.	2.8	39
47	Oxidative decarbonylative coupling of aliphatic aldehydes with methacryloyl benzamides to generate isoquinoline-1,3(2H,4H)-diones. Organic and Biomolecular Chemistry, 2017, 15, 1096-1099.	2.8	26
48	Palladium-Catalyzed Arylcarboxylation of Propargylic Alcohols with CO ₂ and Aryl Halides: Access to Functionalized α-Alkylidene Cyclic Carbonates. Organic Letters, 2017, 19, 1088-1091.	4.6	59
49	The dearomative annulation between N-2-pyridylamidine and CO ₂ toward pyrido[1,2-a]-1,3,5-triazin-4-ones. Organic and Biomolecular Chemistry, 2017, 15, 4064-4067.	2.8	9
50	Radical Decarboxylation/Annulation of Acrylamides with Aliphatic Acyl Peroxides. Journal of Organic Chemistry, 2017, 82, 5005-5010.	3.2	25
51	Radical 1,2-Alkylarylation/Acylarylation of Allylic Alcohols with Aldehydes via Neophyl Rearrangement. Journal of Organic Chemistry, 2017, 82, 7683-7688.	3.2	39
52	1,2-Arylalkylation of N-(arylsulfonyl)acrylamides using aliphatic aldehydes as the alkyl source. Organic and Biomolecular Chemistry, 2017, 15, 5476-5479.	2.8	17
53	Aqueous MCRs of quaternary ammoniums, N-substituted formamides and sodium disulfide towards aryl thioamides. Organic Chemistry Frontiers, 2017, 4, 413-416.	4.5	21
54	Direct arylation of inactivated benzene with aryl acyl peroxides toward biaryls. Organic and Biomolecular Chemistry, 2017, 15, 6467-6469.	2.8	18

#	Article	IF	CITATIONS
55	Palladium-Catalyzed Multicomponent Reactions of <i>o</i> -Alkynylanilines, Aryl Iodides, and CO ₂ toward 3,3-Diaryl 2,4-Quinolinediones. Organic Letters, 2017, 19, 4319-4322.	4.6	34
56	The Construction of X–CN (X=N, S, O) Bonds. Advanced Synthesis and Catalysis, 2017, 359, 26-38.	4.3	63
57	Radical N-arylation/alkylation of sulfoximines. Tetrahedron Letters, 2016, 57, 2372-2374.	1.4	45
58	Iron-catalyzed arylmethylation of sulfonyl acrylamides. Tetrahedron Letters, 2016, 57, 4109-4112.	1.4	18
59	Metal-free radical addition/cyclization of alkynoates with xanthates towards 3-(β-carbonyl)coumarins. Organic and Biomolecular Chemistry, 2016, 14, 9033-9039.	2.8	24
60	Rhodium-Catalyzed Annulation of Primary Benzylamine with α-Diazo Ketone toward Isoquinoline. Journal of Organic Chemistry, 2016, 81, 8009-8013.	3.2	46
61	Metal-Free Cascade Oxidative Decarbonylative Alkylation/Arylation of Alkynoates with Alphatic Aldehydes. Journal of Organic Chemistry, 2016, 81, 12065-12069.	3.2	38
62	Radical C–H functionalization to construct heterocyclic compounds. Chemical Communications, 2016, 52, 2220-2236.	4.1	124
63	Metal-Free Radical Oxidative Annulation of Ynones with Alkanes To Access Indenones. Journal of Organic Chemistry, 2016, 81, 2087-2093.	3.2	80
64	Copper-catalyzed oxidative C(sp ³)–H/N–H coupling of sulfoximines and amides with simple alkanes via a radical process. Chemical Communications, 2015, 51, 5902-5905.	4.1	90
65	Cs ₂ CO ₃ -Promoted Carboxylation of <i>N</i> -Tosylhydrazones with Carbon Dioxide toward α-Arylacrylic Acids. Journal of Organic Chemistry, 2015, 80, 2855-2860.	3.2	24
66	Rh-catalyzed sequential oxidative C–H activation/annulation with geminal-substituted vinyl acetates to access isoquinolines. Chemical Communications, 2015, 51, 13327-13329.	4.1	85
67	Copper(I)â€Catalyzed Desulfinative Carboxylation of Sodium Sulfinates using Carbon Dioxide. Advanced Synthesis and Catalysis, 2015, 357, 2022-2026.	4.3	30
68	Copper-catalyzed N-methylation/ethylation of sulfoximines. Organic and Biomolecular Chemistry, 2015, 13, 9934-9937.	2.8	35
69	Bu4NI-catalyzed direct α-oxyacylation of diarylethanones with acyl peroxides. Organic and Biomolecular Chemistry, 2015, 13, 9751-9754.	2.8	24
70	tert-Butyl Peroxybenzoate-Promoted α-Methylation of 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 11285-11289.	3.2	50
71	TBHP-promoted sequential radical silylation and aromatisation of aryl isonitriles with silanes. Chemical Communications, 2014, 50, 10864-10867.	4.1	66
72	The benzoyl peroxide-promoted functionalization of simple alkanes with 2-aryl phenyl isonitrile. Chemical Communications, 2014, 50, 9179.	4.1	90

#	Article	IF	CITATIONS
73	The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization. Chemical Communications, 2014, 50, 3865.	4.1	103
74	Diâ€ <i>tert</i> Butyl Peroxideâ€Promoted Sequential Methylation and Intramolecular Aromatization of Isonitriles. Advanced Synthesis and Catalysis, 2014, 356, 3341-3346.	4.3	63
75	TBHP-promoted sequential carboxamidation and aromatisation of aryl isonitriles with formamides. Organic and Biomolecular Chemistry, 2014, 12, 9257-9263.	2.8	23
76	The ammonium-promoted formylation of indoles by DMSO and H2O. Organic and Biomolecular Chemistry, 2013, 11, 7092.	2.8	86
77	Threeâ€Component Vicinal Sulfonamination of Alkynes toward 3â€Sulfonylindoles via the Insertion of Sulfur Dioxide. Asian Journal of Organic Chemistry, 0, , .	2.7	5
78	Ruthenium atalyzed C–H Functionalization/Annulation of Nâ€Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. Asian Journal of Organic Chemistry, 0, , .	2.7	4