Hiroyasu Takemoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2521529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. Journal of Controlled Release, 2022, 346, 392-404.	9.9	7
2	Potential urinary monitoring of the enhanced permeability and retention effect using MMP-2-responsive poly(ethylene glycol) derivatives. Journal of Controlled Release, 2021, 329, 513-523.	9.9	10
3	Iron chelation cancer therapy using hydrophilic block copolymers conjugated with deferoxamine. Cancer Science, 2021, 112, 410-421.	3.9	32
4	Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy. Journal of Controlled Release, 2021, 332, 184-193.	9.9	19
5	Systemically Applicable Glutamine-Functionalized Polymer Exerting Multivalent Interaction with Tumors Overexpressing ASCT2. ACS Applied Bio Materials, 2021, 4, 7402-7407.	4.6	4
6	Construction of nanomaterials based on pH-responsive polymers for effective tumor delivery. Polymer Journal, 2021, 53, 1353-1360.	2.7	2
7	Sequentially Self-Assembled Nanoreactor Comprising Tannic Acid and Phenylboronic Acid-Conjugated Polymers Inducing Tumor-Selective Enzymatic Activity. ACS Applied Materials & Interfaces, 2021, 13, 54850-54859.	8.0	7
8	Sequential Self-Assembly Using Tannic Acid and Phenylboronic Acid-Modified Copolymers for Potential Protein Delivery. Biomacromolecules, 2020, 21, 3826-3835.	5.4	24
9	Photodynamic therapy using LCST polymers exerting pH-responsive isothermal phase transition. Journal of Controlled Release, 2020, 328, 608-616.	9.9	11
10	Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials, 2020, 235, 119804.	11.4	16
11	Poly(vinyl alcohol) boosting therapeutic potential of <i>p</i> -boronophenylalanine in neutron capture therapy by modulating metabolism. Science Advances, 2020, 6, eaaz1722.	10.3	77
12	Poly(ethylene glycol)–poly(lysine) block copolymer–ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells. Oncogene, 2019, 38, 244-260.	5.9	22
13	Pyruvate Responsiveness Based on α-Oxohydrazone Formation for Intracellular siRNA Release from Polyion Complex-Based Carriers. Biomacromolecules, 2019, 20, 2305-2314.	5.4	5
14	In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers. Nature Communications, 2019, 10, 1894.	12.8	53
15	Poly(<i>N</i> -isopropylacrylamide)-Based Polymer-Inducing Isothermal Hydrophilic-to-Hydrophobic Phase Transition via Detachment of Hydrophilic Acid-Labile Moiety. Biomacromolecules, 2019, 20, 1493-1504.	5.4	9
16	An Ethylenediamineâ€based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angewandte Chemie - International Edition, 2018, 57, 5057-5061.	13.8	42
17	An Ethylenediamineâ€based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angewandte Chemie, 2018, 130, 5151-5155.	2.0	5
18	Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Scientific Reports, 2018, 8, 8126.	3.3	24

HIROYASU TAKEMOTO

#	Article	IF	CITATIONS
19	Multilayered polyion complexes with dissolvable silica layer covered by controlling densities of cRGD-conjugated PEG chains for cancer-targeted siRNA delivery. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1109-1123.	3.5	5
20	A facile amino-functionalization of poly(2-oxazoline)s' distal end through sequential azido end-capping and Staudinger reactions. European Polymer Journal, 2017, 88, 553-561.	5.4	17
21	Functional polymer-based siRNA delivery carrier that recognizes site-specific biosignals. Journal of Controlled Release, 2017, 267, 90-99.	9.9	13
22	Engineering Tumour Cell-Binding Synthetic Polymers with Sensing Dense Transporters Associated with Aberrant Glutamine Metabolism. Scientific Reports, 2017, 7, 6077.	3.3	14
23	Utility of the 2â€Nitrobenzenesulfonamide Group as a Chemical Linker for Enhanced Extracellular Stability and Cytosolic Cleavage in siRNA onjugated Polymer Systems. ChemMedChem, 2017, 12, 19-22.	3.2	8
24	The 33 rd Annual Meeting of the Japan Society of Drug Delivery System. Drug Delivery System, 2017, 32, 348-349.	0.0	0
25	Macromol. Rapid Commun. 6/2016. Macromolecular Rapid Communications, 2016, 37, 560-560.	3.9	0
26	Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. Journal of Controlled Release, 2016, 244, 247-256.	9.9	87
27	Artificial Control of Gene Silencing Activity Based on siRNA Conjugation with Polymeric Molecule Having Coil–Globule Transition Behavior. Bioconjugate Chemistry, 2016, 27, 1961-1964.	3.6	13
28	Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers. Macromolecular Rapid Communications, 2016, 37, 486-493.	3.9	67
29	siRNA-Loaded Polyion Complex Micelle Decorated with Charge-Conversional Polymer Tuned to Undergo Stepwise Response to Intra-Tumoral and Intra-Endosomal pHs for Exerting Enhanced RNAi Efficacy. Biomacromolecules, 2016, 17, 246-255.	5.4	48
30	Precisely regulated nanoarchitecture comprised of gold nanotemplate and unimer polyion complex for systemic delivery of siRNA. Journal of Controlled Release, 2015, 213, e75-e76.	9.9	0
31	Regulated protonation of polyaspartamide derivatives bearing repeated aminoethylene side chains for efficient intracellular siRNA delivery with minimal cytotoxicity. Chemical Communications, 2015, 51, 3158-3161.	4.1	19
32	Fineâ€Tuning of Chargeâ€Conversion Polymer Structure for Efficient Endosomal Escape of siRNA‣oaded Calcium Phosphate Hybrid Micelles. Macromolecular Rapid Communications, 2014, 35, 1211-1215.	3.9	44
33	Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. Journal of Controlled Release, 2014, 178, 18-24.	9.9	108
34	Bioresponsive Polymer-Based Nucleic Acid Carriers. Advances in Genetics, 2014, 88, 289-323.	1.8	18
35	Precise Engineering of siRNA Delivery Vehicles to Tumors Using Polyion Complexes and Gold Nanoparticles. ACS Nano, 2014, 8, 8979-8991.	14.6	126

HIROYASU TAKEMOTO

#	Article	IF	CITATIONS
37	Design of Functional Polymers for Intracellular Nucleic Acids Delivery. Fundamental Biomedical Technologies, 2014, , 207-217.	0.2	2
38	Fine-Tuning of Repeating Aminoethyelene Units in Poly(aspartamide) Side Chains for Enhanced siRNA Delivery. ACS Symposium Series, 2013, , 189-196.	0.5	5
39	Acidic pHâ€Responsive siRNA Conjugate for Reversible Carrier Stability and Accelerated Endosomal Escape with Reduced IFNαâ€Associated Immune Response. Angewandte Chemie - International Edition, 2013, 52, 6218-6221.	13.8	103
40	Smart Multilayered Assembly for Biocompatible siRNA Delivery Featuring Dissolvable Silica, Endosome-Disrupting Polycation, and Detachable PEG. ACS Nano, 2012, 6, 6693-6705.	14.6	92
41	Accelerated Polymer–Polymer Click Conjugation by Freeze–Thaw Treatment. Bioconjugate Chemistry, 2012, 23, 1503-1506.	3.6	36
42	Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials, 2010, 31, 4764-4770.	11.4	29
43	Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 2010 31 8097-8105	11.4	122