Ludovic F Dumée

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2521309/publications.pdf

Version: 2024-02-01

169 papers 7,230 citations

57719 44 h-index 78 g-index

170 all docs

170 docs citations

170 times ranked

8434 citing authors

#	Article	IF	CITATIONS
1	Circular Materials and Circular Designâ€"Review on Challenges Towards Sustainable Manufacturing and Recycling. Circular Economy and Sustainability, 2022, 2, 9-23.	3.3	28
2	Circular materialsâ€"An essay on challenges with current manufacturing and recycling strategies as well as on the potential of life cycle integrated designs. , 2022, , 359-372.		3
3	Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Separation and Purification Technology, 2022, 285, 120364.	3.9	11
4	Crossâ€linked boron nitrideâ€piperazine amide thin film nanocomposite membranes for rejection and concentration of per―and polyâ€fluoroalkyl substances (PFAS). Environmental Quality Management, 2022, 31, 425-432.	1.0	3
5	Sizeâ€Controlled Nanosculpture of Cylindrical Pores across Multilayer Graphene via Photocatalytic Perforation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
6	Recent Advances in the Theory and Application of Nanofiltration: a Review. Current Pollution Reports, 2022, 8, 51-80.	3.1	36
7	Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance – a review. Materials Advances, 2022, 3, 2309-2323.	2.6	39
8	Thermally-stable photo-curing chemistry for additive manufacturing by direct melt electrowriting. Additive Manufacturing, 2022, 51, 102623.	1.7	3
9	Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. Journal of Membrane Science, 2022, 647, 120325.	4.1	12
10	Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems – A review. Journal of Environmental Management, 2022, 308, 114655.	3.8	20
11	Electro-Driven Materials and Processes for Lithium Recovery—A Review. Membranes, 2022, 12, 343.	1.4	7
12	Membrane distillation for sustainable wastewater treatment. Journal of Water Process Engineering, 2022, 47, 102670.	2.6	13
13	Heavy metal pollution and risks in a highly polluted and populated Indian river–city pair using the systems approach. Environmental Science and Pollution Research, 2022, 29, 60212-60231.	2.7	8
14	Isolating motile sperm cell sorting using biocompatible electrospun membranes. Scientific Reports, 2022, 12, 6057.	1.6	0
15	Photocatalytic-triggered nanopores across multilayer graphene for high-permeation membranes. Chemical Engineering Journal, 2022, 443, 136253.	6.6	5
16	Atomically-thin Schottky-like photo-electrocatalytic cross-flow membrane reactors for ultrafast remediation of persistent organic pollutants. Water Research, 2022, 218, 118519.	5.3	26
17	Ecotoxic effects of microplastics and contaminated microplastics – Emerging evidence and perspective. Science of the Total Environment, 2022, 841, 156593.	3.9	17
18	Atomic layer deposition of transition metal films and nanostructures for electronic and catalytic applications. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 468-489.	6.8	12

#	Article	IF	Citations
19	Nanoscale 2D semi-conductors $\hat{a}\in$ Impact of structural properties on light propagation depth and photocatalytic performance. Separation and Purification Technology, 2021, 258, 118011.	3.9	15
20	Flexible and reusable carbon nano-fibre membranes for airborne contaminants capture. Science of the Total Environment, 2021, 754, 142231.	3.9	18
21	Nano–Enabled sensors for detection of arsenic in water. Water Research, 2021, 188, 116538.	5.3	46
22	Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 2021, 251, 117073.	5.1	15
23	3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Analytical Chemistry, 2021, 93, 350-366.	3.2	69
24	Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Separation and Purification Technology, 2021, 257, 117929.	3.9	56
25	2D nanosheet enabled thin film nanocomposite membranes for freshwater production – a review. Materials Advances, 2021, 2, 3519-3537.	2.6	11
26	Electro-catalytic membrane reactors for the degradation of organic pollutants – a review. Reaction Chemistry and Engineering, 2021, 6, 1508-1526.	1.9	17
27	Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach. Materials, 2021, 14, 201.	1.3	14
28	Predicting Operating Rules for Successful Melt Electrowriting. ACS Applied Polymer Materials, 2021, 3, 1890-1898.	2.0	10
29	Strategies for Integrated Capture and Conversion of CO ₂ from Dilute Flue Gases and the Atmosphere. ChemSusChem, 2021, 14, 1805-1820.	3.6	37
30	Growth of diamond coating on carbon fiber: Relationship between fiber microstructure and stability in hydrogen plasma. Diamond and Related Materials, 2021, 115, 108349.	1.8	2
31	3D printing for the integration of porous materials into miniaturised fluidic devices: A review. Analytica Chimica Acta, 2021, 1185, 338796.	2.6	28
32	Remediation of water from per-/poly-fluoroalkyl substances (PFAS) – Challenges and perspectives. Journal of Environmental Chemical Engineering, 2021, 9, 105784.	3.3	53
33	Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. Journal of Hazardous Materials, 2021, 415, 125639.	6.5	75
34	Applications of Membranes for Sustainability. Membranes, 2021, 11, 629.	1.4	1
35	Surface adsorption of metallic species onto microplastics with long-term exposure to the natural marine environment. Science of the Total Environment, 2021, 780, 146613.	3.9	25
36	Nano/micro plastics – Challenges on quantification and remediation: A review. Journal of Water Process Engineering, 2021, 42, 102128.	2.6	28

#	Article	lF	CITATIONS
37	Modelling Amorphous Nanoporous Polymers Doped with an Ionic Liquid via an Adaptable Computational Procedure. Industrial & Engineering Chemistry Research, 2021, 60, 11893-11904.	1.8	1
38	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
39	Mitigation of membrane particulate fouling by nano/microplastics via physical cleaning strategies. Science of the Total Environment, 2021, 788, 147689.	3.9	31
40	Mitigation of membrane fouling by nano/microplastics via surface chemistry control. Journal of Membrane Science, 2021, 633, 119379.	4.1	32
41	Nano and micro plastics in water processing – Where are we at?. Journal of Water Process Engineering, 2021, 43, 102281.	2.6	3
42	Hybrid polymer/ionic liquid electrospun membranes with tunable surface charge for virus capture in aqueous environments. Journal of Water Process Engineering, 2021, 43, 102278.	2.6	9
43	Membrane fouling by nanofibres and organic contaminants – Mechanisms and mitigation via periodic cleaning strategies. Separation and Purification Technology, 2021, 278, 119592.	3.9	11
44	Blood apheresis technologies – a critical review on challenges towards efficient blood separation and treatment. Materials Advances, 2021, 2, 7210-7236.	2.6	8
45	Microdialysis and microperfusion electrodes in neurologic disease monitoring. Fluids and Barriers of the CNS, 2021, 18, 52.	2.4	11
46	Photo-catalytic membrane reactors for the remediation of persistent organic pollutants – A review. Separation and Purification Technology, 2020, 230, 115878.	3.9	120
47	Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. Journal of Hazardous Materials, 2020, 384, 121393.	6.5	225
48	UV-Assisted Fabrication of Green Quality rGO with Wavelength-Dependant Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 1031-1042.	3.2	13
49	A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering, 2020, 38, 101683.	2.6	74
50	Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Applied Materials Today, 2020, 21, 100878.	2.3	69
51	Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Materials, 2020, 12, .	3.8	105
52	Recrystallization and coalescence kinetics of TiO2 and ZnO nano-catalysts towards enhanced photocatalytic activity and colloidal stability within slurry reactors. Materials Chemistry and Physics, 2020, 252, 123235.	2.0	8
53	Covalent organic framework incorporated outer-selective hollow fiber thin-film nanocomposite membranes for osmotically driven desalination. Desalination, 2020, 485, 114461.	4.0	31
54	Direct contact membrane distillation for effective concentration of perfluoroalkyl substances – Impact of surface fouling and material stability. Water Research, 2020, 182, 116010.	5.3	32

#	Article	IF	CITATIONS
55	Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. Journal of Membrane Science, 2020, 601, 117890.	4.1	109
56	Natural organic matter removal and fouling resistance properties of a boron nitride nanosheet-functionalized thin film nanocomposite membrane and its impact on permeate chlorine demand. Journal of Water Process Engineering, 2020, 34, 101160.	2.6	27
57	Nanofibers for heavy metal ion adsorption: Correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environmental Nanotechnology, Monitoring and Management, 2020, 13, 100297.	1.7	12
58	Engineering high-defect densities across vertically-aligned graphene nanosheets to induce photocatalytic reactivity. Carbon, 2020, 168, 32-41.	5.4	22
59	Applications of nano-porous graphene materials – critical review on performance and challenges. Materials Horizons, 2020, 7, 1218-1245.	6.4	64
60	Functional Nanoporous Titanium Dioxide for Separation Applications: Synthesis Routes and Properties to Performance Analysis., 2019, , 151-186.		1
61	CO2 sponge from plasma enhanced seeded growth of metal organic frameworks across carbon nanotube bucky-papers. Separation and Purification Technology, 2019, 209, 571-579.	3.9	13
62	One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation. Science of the Total Environment, 2019, 647, 725-733.	3.9	42
63	Review on Sperm Sorting Technologies and Sperm Properties toward New Separation Methods via the Interface of Biochemistry and Material Science. Advanced Biology, 2019, 3, 1900079.	3.0	9
64	Catalytic electrospun nano-composite membranes for virus capture and remediation. Separation and Purification Technology, 2019, 229, 115806.	3.9	36
65	Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters. Membranes, 2019, 9, 87.	1.4	16
66	Perforation routes towards practical nano-porous graphene and analogous materials engineering. Carbon, 2019, 155, 660-673.	5.4	46
67	Wrinkled silica doped electrospun nano-fiber membranes with engineered roughness for advanced aerosol air filtration. Separation and Purification Technology, 2019, 215, 500-507.	3.9	77
68	Hybrid graphene-decorated metal hollow fibre membrane reactors for efficient electro-Fenton - Filtration co-processes. Journal of Membrane Science, 2019, 587, 117182.	4.1	45
69	Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 2019, 161, 621-638.	5. 3	372
70	Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance. Applied Surface Science, 2019, 488, 565-577.	3.1	48
71	Upgrading of zirconia membrane performance in removal of hazardous VOCs from water by surface functionalization. Chemical Engineering Journal, 2019, 374, 155-169.	6.6	42
72	Sub-10-nm Mixed Titanium/Tantalum Oxide Nanoporous Films with Visible-Light Photocatalytic Activity for Water Treatment. ACS Applied Nano Materials, 2019, 2, 1951-1963.	2.4	9

#	Article	lF	CITATIONS
73	Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors. Carbon, 2019, 148, 80-90.	5.4	37
74	Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Applied Surface Science, 2019, 483, 219-230.	3.1	38
75	Enhanced Visible Light Sensitization of N-Doped TiO ₂ Nanotubes Containing Ti-Oxynitride Species Fabricated via Electrochemical Anodization of Titanium Nitride. Journal of Physical Chemistry C, 2019, 123, 2189-2201.	1.5	21
76	Discrete silver nanoparticle infusion across silica aerogels towards versatile catalytic coatings for 4-nitrophenol reduction. Materials Chemistry and Physics, 2019, 223, 404-409.	2.0	5
77	Polyhedral Oligomeric Silsesquioxane (POSS) Nano omposite Separation Membranes â^ A Review. Advanced Engineering Materials, 2019, 21, 1800667.	1.6	42
78	Thermo-responsive nanofibrous composite membranes for efficient self-cleaning of protein foulants. Journal of Membrane Science, 2019, 574, 309-317.	4.1	33
79	Nanofibers for Membrane Applications. , 2019, , 937-960.		1
80	Electrospun Membranes for Airborne Contaminants Capture. , 2018, , 1-18.		5
81	Metal alloy solid-state nanopores for single nanoparticle detection. Physical Chemistry Chemical Physics, 2018, 20, 12799-12807.	1.3	16
82	Graphene based room temperature flexible nanocomposites from permanently cross-linked networks. Scientific Reports, 2018, 8, 2803.	1.6	28
83	Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal. Science of the Total Environment, 2018, 625, 706-715.	3.9	63
84	Catalytic nickel and nickel–copper alloy hollow-fiber membranes for the remediation of organic pollutants by electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 6904-6915.	5.2	18
85	Renewable CO2 absorbent for carbon capture and biogas upgrading by membrane contactor. Separation and Purification Technology, 2018, 194, 207-215.	3.9	53
86	High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Advanced Engineering Materials, 2018, 20, 1700572.	1.6	84
87	Electro-capture of heavy metal ions with carbon cloth integrated microfluidic devices. Separation and Purification Technology, 2018, 194, 26-32.	3.9	36
88	The growth of high density network of MOF nano-crystals across macroporous metal substrates – Solvothermal synthesis versus rapid thermal deposition. Applied Surface Science, 2018, 427, 401-408.	3.1	20
89	In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures. Membranes, 2018, 8, 123.	1.4	2
90	An in-situ small angle x ray scattering analysis of nanopore formation during thermally induced chemical dealloying of brass thin foils. Scientific Reports, 2018, 8, 15419.	1.6	8

#	Article	IF	Citations
91	Dual Functional Ultrafiltration Membranes with Enzymatic Digestion and Thermo-Responsivity for Protein Self-Cleaning. Membranes, 2018, 8, 85.	1.4	7
92	Impact of Comonomer Chemistry on Phase Behavior of Polymerizable Lyotropic Ionic Liquid Crystals: A Pre―and Postâ€Polymerization Study. Macromolecular Chemistry and Physics, 2018, 219, 1800307.	1.1	3
93	Short Review on Porous Metal Membranesâ€"Fabrication, Commercial Products, and Applications. Membranes, 2018, 8, 83.	1.4	39
94	Smart electrically responsive hybrid ion-selective membranes for selective gated transport of ionic species. Materials Horizons, 2018, 5, 1185-1193.	6.4	12
95	Plasma Modification and Synthesis of Membrane Materials—A Mechanistic Review. Membranes, 2018, 8, 56.	1.4	55
96	Nanofibers for Membrane Applications. , 2018, , 1-24.		2
97	Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis. Scientific Reports, 2018, 8, 8154.	1.6	14
98	Nanofiber-Based Materials for Persistent Organic Pollutants in Water Remediation by Adsorption. Applied Sciences (Switzerland), 2018, 8, 166.	1.3	29
99	Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS Applied Materials & Diterfaces, 2018, 10, 27477-27487.	4.0	24
100	Tuning micro-wrinkled graphene films for stretchable conductors of controllable electrical conductivity. Carbon, 2018, 139, 672-679.	5.4	28
101	Single step synthesis of Janus nano-composite membranes by atmospheric aerosol plasma polymerization for solvents separation. Science of the Total Environment, 2018, 645, 22-33.	3.9	9
102	Ultrasound-assisted fabrication of metal nano-porous shells across polymer beads and their catalytic activity for reduction of 4-nitrophenol. Ultrasonics Sonochemistry, 2018, 49, 63-68.	3.8	13
103	Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. Journal of Materials Chemistry A, 2018, 6, 12066-12081.	5 . 2	122
104	Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403, 3-11.	4.0	24
105	Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. Journal of Membrane Science, 2017, 528, 217-224.	4.1	38
106	Metal organic framework based catalysts for CO ₂ conversion. Materials Horizons, 2017, 4, 345-361.	6.4	359
107	Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation. Scientific Reports, 2017, 7, 45112.	1.6	11
108	Grafting of Nâ€moieties onto octaâ€methyl polyhedral oligomeric silsesquioxane microstructures by sequential continuous wave and pulsed plasma. Plasma Processes and Polymers, 2017, 14, 1600244.	1.6	5

#	Article	IF	CITATIONS
109	Nanofiber Composite Membrane with Intrinsic Janus Surface for Reversed-Protein-Fouling Ultrafiltration. ACS Applied Materials & Interfaces, 2017, 9, 18328-18337.	4.0	41
110	Controlled porosity and pore size of nano-porous gold by thermally assisted chemical dealloying – a SAXS study. RSC Advances, 2017, 7, 10821-10830.	1.7	30
111	Insights into Free Volume Variations across Ion-Exchange Membranes upon Mixed Solvents Uptake by Small and Ultrasmall Angle Neutron Scattering. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8704-8713.	4.0	7
112	Diffusion dynamics of latex nanoparticles coated with ssDNA across a single nanopore. Soft Matter, 2017, 13, 496-502.	1.2	18
113	Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO ₂ . ACS Applied Materials & Samp; Interfaces, 2017, 9, 35010-35017.	4.0	111
114	Charge tunable thin-film composite membranes by gamma-ray triggered surface polymerization. Scientific Reports, 2017, 7, 4426.	1.6	9
115	Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes. Journal of Membrane Science, 2017, 540, 200-211.	4.1	23
116	Zinc Oxide PVDF Nano omposites–Tuning Interfaces toward Enhanced Mechanical Properties and UV Protection. Advanced Engineering Materials, 2017, 19, 1600611.	1.6	11
117	Surface ionic charge dependence on the molecular mobility and self-assembly behavior of ionomers produced from carboxylic acid-terminated dendrimers. Polymer Journal, 2017, 49, 245-254.	1.3	5
118	Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering. Membranes, 2017, 7, 40.	1.4	8
119	Electro-Catalytic Biodiesel Production from Canola Oil in Methanolic and Ethanolic Solutions with Low-Cost Stainless Steel and Hybrid Ion-Exchange Resin Grafted Electrodes. Frontiers in Materials, 2017, 4, .	1.2	11
120	Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537, 1-10.	4.1	29
121	Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering. Membranes, 2016, 6, 41.	1.4	3
122	Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Scientific Reports, 2016, 6, 31565.	1.6	40
123	Superhydrophobic and Superoleophilic Micro-Wrinkled Reduced Graphene Oxide as a Highly Portable and Recyclable Oil Sorbent. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9977-9985.	4.0	80
124	Structure–property relationships of elementary bamboo fibers. Cellulose, 2016, 23, 3521-3534.	2.4	12
125	Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification. Scientific Reports, 2016, 6, 29206.	1.6	50
126	Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363, 273-285.	3.1	24

#	Article	IF	Citations
127	Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design. Nanomaterials, 2015, 5, 1766-1781.	1.9	7
128	Silver nanoparticles prepared by gamma irradiation across metal–organic framework templates. RSC Advances, 2015, 5, 10707-10715.	1.7	52
129	Synthesis of single-crystalline LiFePO4 with rhombus-like morphology. Ionics, 2015, 21, 295-299.	1.2	4
130	Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon, 2015, 87, 395-408.	5.4	65
131	Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination, 2015, 365, 126-135.	4.0	164
132	Study on LiFe1 â^' x Sm x PO4/C used as cathode materials for lithium-ion batteries with low Sm component. Ionics, 2015, 21, 2119-2125.	1.2	4
133	Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion. ACS Applied Materials & Interfaces, 2015, 7, 14644-14653.	4.0	45
134	A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by in Situ Small Angle X-ray Scattering. Langmuir, 2015, 31, 8478-8487.	1.6	78
135	Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon, 2015, 93, 878-886.	5.4	45
136	Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane. Journal of Membrane Science, 2015, 487, 32-39.	4.1	77
137	Investigation of hybrid ion-exchange membranes reinforced with non-woven metal meshes for electro-dialysis applications. Separation and Purification Technology, 2015, 147, 353-363.	3.9	18
138	Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles. Industrial & Engineering Chemistry Research, 2015, 54, 11188-11198.	1.8	59
139	Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal. Physical Chemistry Chemical Physics, 2015, 17, 23059-23068.	1.3	22
140	Electrodialysis in Aqueous-Organic Mixtures. Separation and Purification Reviews, 2015, 44, 269-282.	2.8	31
141	Towards integrated anti-microbial capabilities: Novel bio-fouling resistant membranes by high velocity embedment of silver particles. Journal of Membrane Science, 2015, 475, 552-561.	4.1	41
142	Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template. Nanomaterials, 2014, 4, 686-699.	1.9	6
143	Monoethanolamine Reclamation Using Electrodialysis. Industrial & Engineering Chemistry Research, 2014, 53, 19313-19321.	1.8	20
144	Tuning the grade of graphene: Gamma ray irradiation of free-standing graphene oxide films in gaseous phase. Applied Surface Science, 2014, 322, 126-135.	3.1	46

#	Article	IF	CITATIONS
145	Nanofiltration for the concentration of heat stable salts prior to MEA reclamation. International Journal of Greenhouse Gas Control, 2014, 30, 34-41.	2.3	17
146	Qualitative spectroscopic characterization of the matrix–silane coupling agent interface across metal fibre reinforced ion exchange resin composite membranes. Vibrational Spectroscopy, 2014, 75, 203-212.	1,2	8
147	Single step preparation of meso-porous and reduced graphene oxide by gamma-ray irradiation in gaseous phase. Carbon, 2014, 70, 313-318.	5.4	59
148	Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films. Nanomaterials, 2014, 4, 856-878.	1.9	14
149	The role of membrane surface energy on direct contact membrane distillation performance. Desalination, 2013, 323, 22-30.	4.0	58
150	Small angle X-ray scattering study of carbon nanotube forests densified into long range patterns by controlled solvent evaporation. Journal of Colloid and Interface Science, 2013, 407, 556-560.	5.0	12
151	Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. Journal of Materials Chemistry A, 2013, 1, 9208.	5.2	83
152	The fabrication and surface functionalization of porous metal frameworks $\hat{a} \in \text{``a review. Journal of Materials Chemistry A, 2013, 1, 15185.}$	5.2	56
153	Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. Journal of Membrane Science, 2013, 427, 422-430.	4.1	81
154	Characterization of carbon nanotube webs and yarns with small angle X-ray scattering: Revealing the yarn twist and inter-nanotube interactions and alignment. Carbon, 2013, 63, 562-566.	5.4	31
155	Advances in Membrane Distillation for Water Desalination and Purification Applications. Water (Switzerland), 2013, 5, 94-196.	1.2	601
156	A high volume and low damage route to hydroxyl functionalization of carbon nanotubes using hard X-ray lithography. Carbon, 2013, 51, 430-434.	5.4	15
157	Focused Ion Beam Milling of Carbon Nanotube Yarns and Bucky-Papers: Correlating Their Internal Structure with Their Macro-Properties. Lecture Notes in Nanoscale Science and Technology, 2013, , 63-93.	0.4	2
158	Influence of the Sonication Temperature on the Debundling Kinetics of Carbon Nanotubes in Propan-2-ol. Nanomaterials, 2013, 3, 70-85.	1.9	36
159	In situ small angle X-ray scattering investigation of the thermal expansion and related structural information of carbon nanotube composites. Progress in Natural Science: Materials International, 2012, 22, 673-683.	1.8	11
160	Activation of gold decorated carbon nanotube hybrids for targeted gas adsorption and enhanced catalytic oxidation. Journal of Materials Chemistry, 2012, 22, 9374.	6.7	30
161	Purification of aqueous amine solvents used in post combustion CO2 capture: A review. International Journal of Greenhouse Gas Control, 2012, 10, 443-455.	2.3	118
162	Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes. Membranes, 2011, 1, 25-36.	1.4	42

#	Article	IF	CITATION
163	The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation. Desalination, 2011, 283, 64-67.	4.0	76
164	Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. Journal of Membrane Science, 2011, 376, 241-246.	4.1	124
165	A Preliminary Study on the Effect of Macro Cavities Formation on Properties of Carbon Nanotube Bucky-Paper Composites. Materials, 2011, 4, 553-561.	1.3	16
166	Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. Journal of Membrane Science, 2010, 351, 36-43.	4.1	279
167	Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalination and Water Treatment, 2010, 17, 72-79.	1.0	60
168	Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation. Materials, 2010, 3, 127-149.	1.3	232
169	Hierarchical hollow metal nanostructure arrays for selective CO2 conversion. Materials Advances, 0, , .	2.6	1