Geoff G Z Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/252093/publications.pdf

Version: 2024-02-01

76 papers 5,199 citations

94433 37 h-index 72 g-index

76 all docs

76 docs citations

76 times ranked 3415 citing authors

#	Article	IF	CITATIONS
1	Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharmaceutical Research, 2010, 27, 608-618.	3.5	395
2	Phase transformation considerations during process development and manufacture of solid oral dosage forms. Advanced Drug Delivery Reviews, 2004, 56, 371-390.	13.7	376
3	Physical Stability of Amorphous Pharmaceuticals: Importance of Configurational Thermodynamic Quantities and Molecular Mobility. Journal of Pharmaceutical Sciences, 2002, 91, 1863-1872.	3.3	292
4	Physical chemistry of supersaturated solutions and implications for oral absorption. Advanced Drug Delivery Reviews, 2016, 101, 122-142.	13.7	286
5	Dissolution and Precipitation Behavior of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2011, 100, 3316-3331.	3.3	231
6	Solubilities of Crystalline Drugs in Polymers: An Improved Analytical Method and Comparison of Solubilities of Indomethacin and Nifedipine in PVP, PVP/VA, and PVAc. Journal of Pharmaceutical Sciences, 2010, 99, 4023-4031.	3.3	212
7	Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation. Journal of Pharmaceutical Sciences, 2007, 96, 990-995.	3.3	185
8	Solubility of Small-Molecule Crystals in Polymers: d-Mannitol in PVP, Indomethacin in PVP/VA, and Nifedipine in PVP/VA. Pharmaceutical Research, 2009, 26, 855-864.	3.5	183
9	Enhancements and Limits in Drug Membrane Transport Using Supersaturated Solutions of Poorly Water Soluble Drugs. Journal of Pharmaceutical Sciences, 2014, 103, 2736-2748.	3.3	148
10	Exploiting the Phenomenon of Liquid–Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 2016, 13, 2059-2069.	4.6	139
11	Characterizing the Impact of Hydroxypropylmethyl Cellulose on the Growth and Nucleation Kinetics of Felodipine from Supersaturated Solutions. Crystal Growth and Design, 2012, 12, 1538-1547.	3.0	120
12	Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. Journal of Controlled Release, 2018, 292, 172-182.	9.9	116
13	The curious case of (caffeine) \hat{A} ·(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal. Chemical Science, 2013, 4, 4417.	7.4	115
14	Thermodynamics, Molecular Mobility and Crystallization Kinetics of Amorphous Griseofulvin. Molecular Pharmaceutics, 2008, 5, 927-936.	4.6	114
15	Cocrystals of Caffeine and Hydroxybenzoic Acids Composed of Multiple Supramolecular Heterosynthons: Screening via Solution-Mediated Phase Transformation and Structural Characterization. Crystal Growth and Design, 2009, 9, 1932-1943.	3.0	111
16	Crystallization and Transitions of Sulfamerazine Polymorphs. Journal of Pharmaceutical Sciences, 2002, 91, 1089-1100.	3.3	108
17	Insights into the Dissolution Mechanism of Ritonavir–Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Molecular Pharmaceutics, 2019, 16, 1327-1339.	4.6	106
18	Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research, 2015, 32, 3350-3364.	3.5	101

#	Article	IF	Citations
19	In Situ Dehydration of Carbamazepine Dihydrate: A Novel Technique to Prepare Amorphous Anhydrous Carbamazepine. Pharmaceutical Development and Technology, 2000, 5, 257-266.	2.4	100
20	Co-Crystals of Caffeine and Hydroxy-2-naphthoic Acids:  Unusual Formation of the Carboxylic Acid Dimer in the Presence of a Heterosynthon. Molecular Pharmaceutics, 2007, 4, 339-346.	4.6	90
21	Determining the Growth Mechanism of Tolazamide by Induction Time Measurement. Crystal Growth and Design, 2007, 7, 234-242.	3.0	86
22	Pharmaceutical Nanoâ€Cocrystals: Sonochemical Synthesis by Solvent Selection and Use of a Surfactant. Angewandte Chemie - International Edition, 2010, 49, 7284-7288.	13.8	78
23	Trends in the Precipitation and Crystallization Behavior of Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs Assessed Using Synchrotron Radiation. Journal of Pharmaceutical Sciences, 2015, 104, 1981-1992.	3.3	71
24	Insights into the Dissolution Behavior of Ledipasvir–Copovidone Amorphous Solid Dispersions: Role of Drug Loading and Intermolecular Interactions. Molecular Pharmaceutics, 2019, 16, 5054-5067.	4.6	68
25	A Calorimetric Investigation of Thermodynamic andMolecular Mobility Contributions to the Physical Stability of Two Pharmaceutical Glasses. Journal of Pharmaceutical Sciences, 2007, 96, 71-83.	3.3	55
26	Racemic species of sodium ibuprofen: Characterization and polymorphic relationships. Journal of Pharmaceutical Sciences, 2003, 92, 1356-1366.	3.3	51
27	Impact of Polymers on the Crystallization and Phase Transition Kinetics of Amorphous Nifedipine during Dissolution in Aqueous Media. Molecular Pharmaceutics, 2014, 11, 3565-3576.	4.6	51
28	Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir. Pharmaceutical Research, 2017, 34, 1276-1295.	3.5	51
29	Model-free treatment of the dehydration kinetics of nedocromil sodium trihydrate. Journal of Pharmaceutical Sciences, 2003, 92, 1367-1376.	3.3	48
30	Origin of Nanodroplet Formation Upon Dissolution of an Amorphous Solid Dispersion: A Mechanistic Isotope Scrambling Study. Journal of Pharmaceutical Sciences, 2017, 106, 1998-2008.	3.3	48
31	Assessing Physical Stability of Colloidal Dispersions Using a Turbiscan Optical Analyzer. Molecular Pharmaceutics, 2019, 16, 877-885.	4.6	47
32	Cocrystal Intrinsic Dissolution Behavior Using a Rotating Disk. Journal of Pharmaceutical Sciences, 2011, 100, 1736-1744.	3.3	46
33	Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, D-arabitol, D-xylitol, and glycerol. Journal of Chemical Physics, 2018, 149, 054503.	3.0	43
34	Chiral co-crystal solid solution: structures, melting point phase diagram, and chiral enrichment of (ibuprofen)2(4,4-dipyridyl). CrystEngComm, 2010, 12, 1485.	2.6	41
35	Supramolecular Complexes of Sulfadiazine and Pyridines: Reconfigurable Exteriors and Chameleon-like Behavior of Tautomers at the Co-Crystal–Salt Boundary. Crystal Growth and Design, 2013, 13, 393-403.	3.0	41
36	Using Environment-Sensitive Fluorescent Probes to Characterize Liquid-Liquid Phase Separation in Supersaturated Solutions of Poorly Water Soluble Compounds. Pharmaceutical Research, 2015, 32, 3660-3673.	3 . 5	40

#	Article	IF	Citations
37	A microfluidic platform for pharmaceutical salt screening. Lab on A Chip, 2011, 11, 3829.	6.0	38
38	Low-Concentration Polymers Inhibit and Accelerate Crystal Growth in Organic Glasses in Correlation with Segmental Mobility. Journal of Physical Chemistry B, 2013, 117, 10334-10341.	2.6	37
39	Synthon Hierarchies in Crystal Forms Composed of Theophylline and Hydroxybenzoic Acids: Cocrystal Screening via Solution-Mediated Phase Transformation. Crystal Growth and Design, 2014, 14, 5318-5328.	3.0	37
40	Paclitaxel Crystal Seeds with Different Intrinsic Properties and Their Impact on Dissolution of Paclitaxel-HPMCAS Amorphous Solid Dispersions. Crystal Growth and Design, 2018, 18, 1548-1559.	3.0	37
41	Microfluidic Approach to Cocrystal Screening of Pharmaceutical Parent Compounds. Crystal Growth and Design, 2012, 12, 6023-6034.	3.0	36
42	â€~Masked synthons' in crystal engineering: insulated components in acetaminophen cocrystal hydrates. CrystEngComm, 2013, 15, 4816.	2.6	33
43	Foslevodopa/Foscarbidopa: A New Subcutaneous Treatment for Parkinson's Disease. Annals of Neurology, 2021, 90, 52-61.	5.3	33
44	A 1:1 Cocrystal of Caffeine and 2-Hydroxy-1-Naphthoic Acid Obtained via a Slurry Screening Method. Journal of Chemical Crystallography, 2010, 40, 933-939.	1.1	31
45	Microfluidic approach to polymorph screening through antisolvent crystallization. CrystEngComm, 2012, 14, 2404.	2.6	31
46	Formation of Liquid Inclusions in Adipic Acid Crystals during Recrystallization from Aqueous Solutions. Crystal Growth and Design, 2005, 5, 319-324.	3.0	29
47	A Red Zwitterionic Co-Crystal of Acetaminophen and 2,4-Pyridinedicarboxylic Acid. Journal of Pharmaceutical Sciences, 2010, 99, 3676-3683.	3.3	29
48	Crystallization Optimization of Pharmaceutical Solid Forms with X-ray Compatible Microfluidic Platforms. Crystal Growth and Design, 2015, 15, 1201-1209.	3.0	29
49	Phase Behavior of Amorphous Solid Dispersions of Felodipine: Homogeneity and Drug–Polymer Interactions. Molecular Pharmaceutics, 2019, 16, 4836-4851.	4.6	28
50	Evidence for Halogen Bonding in Amorphous Solid Dispersions. Crystal Growth and Design, 2020, 20, 3224-3235.	3.0	27
51	Modeling Physical Stability of Amorphous Solids Based onÂTemperature and Moisture Stresses. Journal of Pharmaceutical Sciences, 2016, 105, 2932-2939.	3.3	24
52	Effect of Polymers on Crystallization in Glass-Forming Molecular Liquids: Equal Suppression of Nucleation and Growth and Master Curve for Prediction. Crystal Growth and Design, 2020, 20, 237-244.	3.0	23
53	Amphiphilic Block Copolymer as a Crystal Habit Modifier. Crystal Growth and Design, 2005, 5, 1781-1785.	3.0	22
54	Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. Molecular Pharmaceutics, 2019, 16, 3617-3625.	4.6	22

#	Article	IF	CITATIONS
55	Assessing Physical Stability Risk Using the Amorphous Classification System (ACS) Based on Simple Thermal Analysis. Molecular Pharmaceutics, 2019, 16, 2742-2754.	4.6	21
56	Impact of Drug–Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. Molecular Pharmaceutics, 2021, 18, 3496-3508.	4.6	21
57	A Microfluidic Platform for Evaporation-based Salt Screening of Pharmaceutical Parent compounds. Lab on A Chip, 2013, 13, 1708.	6.0	20
58	Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Pharmaceutical Research, 2022, 39, 381-397.	3.5	18
59	Anisotropic Molecular Organization at a Liquid/Vapor Interface Promotes Crystal Nucleation with Polymorph Selection. Journal of the American Chemical Society, 2022, 144, 11638-11645.	13.7	18
60	Impact of Monomeric versus Micellar Surfactant and Surfactant–Polymer Interactions on Nucleation–Induction Times of Atazanavir from Supersaturated Solutions. Crystal Growth and Design, 2020, 20, 62-72.	3.0	17
61	Polymorphic selectivity in crystal nucleation. Journal of Chemical Physics, 2022, 156, 144504.	3.0	17
62	A Novel Accelerated Oxidative Stability Screening Method for Pharmaceutical Solids. Journal of Pharmaceutical Sciences, 2011, 100, 3529-3538.	3.3	16
63	Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharmaceutical Research, 2022, 39, 167-188.	3.5	15
64	Solvent compatible microfluidic platforms for pharmaceutical solid form screening. RSC Advances, 2016, 6, 13286-13296.	3.6	13
65	Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. International Journal of Pharmaceutics, 2022, 619, 121708.	5 . 2	13
66	Expanding the Repertoire for "Large Small Molecules†Prodrug ABBV-167 Efficiently Converts to Venetoclax with Reduced Food Effect in Healthy Volunteers. Molecular Cancer Therapeutics, 2021, 20, 999-1008.	4.1	12
67	Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode. IUCrJ, 2017, 4, 555-559.	2.2	11
68	Surfactants Accelerate Crystallization of Amorphous Nifedipine by Similar Enhancement of Nucleation and Growth Independent of Hydrophilic–Lipophilic Balance. Molecular Pharmaceutics, 2022, 19, 2343-2350.	4.6	11
69	Direct Visualization of Drug–Polymer Phase Separation in Ritonavir–Copovidone Amorphous Solid Dispersions Using <i>in situ</i> Synchrotron X-ray Fluorescence Imaging of Thin Films. Molecular Pharmaceutics, 2019, 16, 4751-4754.	4.6	9
70	Predictive Modeling of Micellar Solubilization by Single and Mixed Nonionic Surfactants. Journal of Pharmaceutical Sciences, 2018, 107, 2079-2090.	3.3	8
71	Influence of sample preparation on IGC measurements: the cases of silanised glass wool and packing structure. RSC Advances, 2017, 7, 12194-12200.	3.6	7
72	Crystallographic Characterization of Several Erythromycin A Solvates: The Environment of The Solvent Molecules in the Crystal Lattice. Journal of Pharmaceutical Sciences, 2007, 96, 1251-1257.	3.3	5

#	Article	IF	CITATION
73	An Intramolecular OH···π(arene) Interaction in a BINOL–Phenazine Cocrystal with a "Free―N-Atom. Crystal Growth and Design, 2018, 18, 3890-3895.	3.0	3
74	Overcoming Bioavailability Challenges of Dasabuvir and Enabling a Triple-Combination Direct-Acting Antiviral HCV Regimen through a Salt of Very Weak Acid for Oral Delivery. Molecular Pharmaceutics, 2022, 19, 2367-2379.	4.6	3
75	Reducing a cocrystal to nanoscale dimensions enables retention of physical crystal integrity upon dehydration. CrystEngComm, 2017, 19, 3723-3726.	2.6	2
76	Editorial. International Journal of Pharmaceutics, 2013, 442, 1-2.	5.2	О