
Yao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520909/publications.pdf Version: 2024-02-01

YAO MANO

#	Article	IF	CITATIONS
1	Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO ₂ Gas Sensibility. ACS Applied Materials & Interfaces, 2017, 9, 11819-11827.	8.0	88
2	Mimicking a Dog's Nose: Scrolling Graphene Nanosheets. ACS Nano, 2018, 12, 2521-2530.	14.6	78
3	Supramolecular fabrication of multilevel graphene-based gas sensors with high NO ₂ sensibility. Nanoscale, 2015, 7, 10259-10266.	5.6	58
4	Supramolecularly Modified Graphene for Ultrafast Responsive and Highly Stable Humidity Sensor. Journal of Physical Chemistry C, 2015, 119, 28640-28647.	3.1	54
5	Strategies for the performance enhancement of graphene-based gas sensors: A review. Talanta, 2021, 235, 122745.	5.5	42
6	CO2-selective free-standing membrane by self-assembly of a UV-crosslinkable diblock copolymer. Journal of Materials Chemistry, 2012, 22, 10918.	6.7	27
7	Enhancement of charge transfer between graphene and donor–π-acceptor molecule for ultrahigh sensing performance. Nanoscale, 2017, 9, 16273-16280.	5.6	26
8	One-Step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. Scientific Reports, 2017, 7, 2713.	3.3	20
9	Smart Supramolecular Self-Assembled Nanosystem: Stimulus-Responsive Hydrogen-Bonded Liquid Crystals. Nanomaterials, 2021, 11, 448.	4.1	20
10	Supramolecular fabrication of polyelectrolyte-modified reduced graphene oxide for NO2 sensing applications. Ceramics International, 2015, 41, 12130-12136.	4.8	19
11	An insight into improvement of room temperature formaldehyde sensitivity for graphene-based gas sensors. Microchemical Journal, 2021, 160, 105607.	4.5	18
12	Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. Journal of Materials Chemistry A, 2021, 9, 23955-23967.	10.3	16
13	Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS Applied Materials & Interfaces, 2022, 14, 13186-13195.	8.0	16
14	Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly. Polymers, 2014, 6, 1403-1413.	4.5	14
15	High flux CO2 transporting nanochannel fabricated by the self-assembly of a linear-brush block copolymer. Journal of Materials Chemistry A, 2013, 1, 8097.	10.3	13
16	Mimicking how plants control CO2 influx: CO2 activation of ion current rectification in nanochannels. NPG Asia Materials, 2015, 7, e215-e215.	7.9	11
17	Assembly with copper(<scp>ii</scp>) ions and D–΀–A molecules on a graphene surface for ultra-fast acetic acid sensing at room temperature. RSC Advances, 2019, 9, 30432-30438.	3.6	10
18	Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase. RSC Advances, 2016, 6, 29811-29817.	3.6	9

YAO WANG

#	Article	IF	CITATIONS
19	Charge transfer driven by redox dye molecules on graphene nanosheets for room-temperature gas sensing. Nanoscale, 2021, 13, 18596-18607.	5.6	9
20	Electric-field induced layer-by-layer assembly technique with single component for construction of conjugated polymer films. RSC Advances, 2015, 5, 58499-58503.	3.6	6
21	Three-Dimensional Graphene-Based Foams with "Greater Electron Transferring Areas―Deriving High Gas Sensitivity. ACS Applied Nano Materials, 2021, 4, 13234-13245.	5.0	6
22	Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes. Scientific Reports, 2017, 7, 40082.	3.3	4
23	Bifunction-Integrated Dielectric Nanolayers of Fluoropolymers with Electrowetting Effects. Materials, 2018, 11, 2474.	2.9	3