Nuri C. Onat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520874/publications.pdf Version: 2024-02-01

NUDIC ONAT

#	Article	IF	CITATIONS
1	Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied Energy, 2015, 150, 36-49.	5.1	275
2	Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach. Building and Environment, 2014, 72, 53-62.	3.0	188
3	Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustainability, 2017, 9, 706.	1.6	167
4	Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: the case for US buildings. International Journal of Life Cycle Assessment, 2014, 19, 1488-1505.	2.2	139
5	Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustainable Production and Consumption, 2016, 6, 12-25.	5.7	130
6	Towards greening the U.S. residential building stock: A system dynamics approach. Building and Environment, 2014, 78, 68-80.	3.0	121
7	Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. International Journal of Life Cycle Assessment, 2016, 21, 1009-1034.	2.2	115
8	Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability, 2014, 6, 9305-9342.	1.6	109
9	Carbon footprint of construction industry: A global review and supply chain analysis. Renewable and Sustainable Energy Reviews, 2020, 124, 109783.	8.2	105
10	Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S Journal of Cleaner Production, 2016, 112, 291-307.	4.6	99
11	Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Applied Energy, 2016, 184, 889-904.	5.1	96
12	Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. Journal of Cleaner Production, 2016, 133, 1260-1276.	4.6	96
13	Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings. Applied Energy, 2016, 168, 146-158.	5.1	95
14	Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transportation Research, Part D: Transport and Environment, 2016, 47, 195-207.	3.2	87
15	How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Applied Energy, 2019, 250, 461-477.	5.1	72
16	Exploring the suitability of electric vehicles in the United States. Energy, 2017, 121, 631-642.	4.5	71
17	Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. Energy, 2016, 112, 715-728.	4.5	68
18	Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. Journal of Cleaner Production, 2019, 212, 515-526.	4.6	66

NURI C. ONAT

#	Article	lF	CITATIONS
19	A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. Sustainable Development, 2020, 28, 1347-1365.	6.9	62
20	A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing. Sustainable Production and Consumption, 2015, 1, 47-66.	5.7	61
21	Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production, 2020, 251, 119661.	4.6	58
22	Material footprint of electric vehicles: A multiregional life cycle assessment. Journal of Cleaner Production, 2019, 209, 1033-1043.	4.6	54
23	A framework for water and carbon footprint analysis of national electricity production scenarios. Energy, 2017, 139, 406-421.	4.5	47
24	Assessing regional and global environmental footprints and value added of the largest food producers in the world. Resources, Conservation and Recycling, 2019, 144, 187-197.	5.3	46
25	Well-to-wheel water footprints of conventional versus electric vehicles in the United States: A state-based comparative analysis. Journal of Cleaner Production, 2018, 204, 788-802.	4.6	39
26	Water and carbon footprint reduction potential of renewable energy in the United States: A policy analysis using system dynamics. Journal of Cleaner Production, 2019, 228, 910-926.	4.6	39
27	Public transportation adoption requires a paradigm shift in urban development structure. Journal of Cleaner Production, 2017, 142, 1789-1799.	4.6	36
28	From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Conversion and Management, 2020, 216, 112937.	4.4	33
29	The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies. Systems, 2017, 5, 6.	1.2	28
30	Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios. Journal of Cleaner Production, 2022, 335, 130291.	4.6	28
31	Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK. Resources, Conservation and Recycling, 2017, 125, 251-263.	5.3	27
32	Material dependence of national energy development plans: The case for Turkey and United Kingdom. Journal of Cleaner Production, 2018, 200, 490-500.	4.6	27
33	Circular economy application for a Green Stadium construction towards sustainable FIFA world cup Qatar 2022â,,¢. Environmental Impact Assessment Review, 2021, 87, 106543.	4.4	27
34	Life cycle sustainability assessment of autonomous heavyâ€duty trucks. Journal of Industrial Ecology, 2020, 24, 149-164.	2.8	26
35	How circular design can contribute to social sustainability and legacy of the FIFA World Cup Qatar 2022â,,¢? The case of innovative shipping container stadium. Environmental Impact Assessment Review, 2021, 91, 106665.	4.4	24
36	How ecoâ€efficient are electric vehicles across Europe? A regionalized life cycle assessmentâ€based ecoâ€efficiency analysis. Sustainable Development, 2021, 29, 941-956.	6.9	23

NURI C. ONAT

#	Article	IF	CITATIONS
37	A model for estimating the carbon footprint of maritime transportation of Liquefied Natural Gas under uncertainty. Sustainable Production and Consumption, 2021, 27, 1602-1613.	5.7	20
38	The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives. Vehicles, 2021, 3, 618-635.	1.7	20
39	A frontierâ€based managerial approach for relative sustainability performance assessment of the world's airports. Sustainable Development, 2021, 29, 89-107.	6.9	13
40	A mixed model-based Johnson's relative weights for eco-efficiency assessment: The case for global food consumption. Environmental Impact Assessment Review, 2021, 89, 106588.	4.4	12
41	How to compare sustainability impacts of alternative fuel Vehicles?. Transportation Research, Part D: Transport and Environment, 2022, 102, 103129.	3.2	11
42	A novel approach for developing composite eco-efficiency indicators: The case for US food consumption. Journal of Cleaner Production, 2021, 299, 126931.	4.6	8
43	Selection of alternative fuel taxis: a hybridized approach of life cycle sustainability assessment and multi-criteria decision making with neutrosophic sets. International Journal of Sustainable Transportation, 2022, 16, 833-846.	2.1	7
44	An Integrated Dynamical Modeling Perspective for Infrastructure Resilience. Infrastructures, 2018, 3, 11.	1.4	5
45	Life Cycle Sustainability Assessment of Sport Utility Vehicles: The Case for Qatar. Advances in Intelligent Systems and Computing, 2020, , 279-287.	0.5	5
46	Supply Chain Linked Sustainability Assessment of Electric Vehicles: the Case for Qatar. , 2019, , .		4
47	A Novel Hybrid Life Cycle Assessment Approach to Air Emissions and Human Health Impacts of Liquefied Natural Gas Supply Chain. Energies, 2021, 14, 6278.	1.6	4
48	Global Carbon Footprint Analysis of Turkish Construction Industry. Sakarya University Journal of Science, 2018, 22, 529-547.	0.3	4
49	Sustainable Transportation in Qatar. , 2021, , .		3
50	How Can Collaborative Circular Economy Practices in Modular Construction Help Fédération Internationale de Football Association World Cup Qatar 2022 to Achieve Its Quest for Sustainable Development and Ecological Systems?. Frontiers in Sustainability, 2021, 2, .	1.3	3
51	Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport. Energies, 2021, 14, 6208.	1.6	2
52	How sustainable is liquefied natural gas supply chain? An integrated life cycle sustainability assessment model. Energy Conversion and Management: X, 2022, 15, 100246.	0.9	1
53	Exploring the Social, Economic and Environmental Footprint of Food Consumption: A Supply Chain-linked Sustainability Assessment. , 2019, , .		0