Goshtasp Cheraghian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520551/publications.pdf

Version: 2024-02-01

182225 223390 65 2,626 30 49 citations g-index h-index papers 69 69 69 1891 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The computational study of nanoparticles shape effects on thermal behavior of H2O-Fe nanofluid: A molecular dynamics approach. Journal of Molecular Liquids, 2022, 346, 117093.	2.3	19
2	Simulation of a parabolic trough solar collector containing hybrid nanofluid and equipped with compound turbulator to evaluate exergy efficacy and thermalâ€hydraulic performance. Energy Science and Engineering, 2022, 10, 4304-4317.	1.9	8
3	Experimental Investigation on Ultraviolet Aging Properties of Silica Nanoparticles-Modified Bitumen. RILEM Bookseries, 2022, , 879-885.	0.2	1
4	Improvement of the energy and exergy efficiencies of the parabolic solar collector equipped with a twisted turbulator using SWCNT-Cu/water two-phase hybrid nanofluid. Sustainable Energy Technologies and Assessments, 2022, 49, 101705.	1.7	7
5	Application of hybrid nanofluid and a twisted turbulator in a parabolic solar trough collector: Energy and exergy models. Sustainable Energy Technologies and Assessments, 2022, 49, 101708.	1.7	9
6	Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustainable Energy Technologies and Assessments, 2022, 51, 101855.	1.7	11
7	A critical analysis on the energy and exergy performance of photovoltaic/thermal (PV/T) system: The role of nanofluids stability and synthesizing method. Sustainable Energy Technologies and Assessments, 2022, 51, 101887.	1.7	17
8	Using nanoparticles in solar collector to enhance solar-assisted hot process stream usefulness. Sustainable Energy Technologies and Assessments, 2022, 52, 101992.	1.7	8
9	Engineered nanocomposites in asphalt binders. Nanotechnology Reviews, 2022, 11, 1047-1067.	2.6	15
10	Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit. Journal of Energy Storage, 2022, 49, 104181.	3.9	34
11	Effect of nano phase change materials on the cooling process of a triangular lithium battery pack. Journal of Energy Storage, 2022, 51, 104326.	3.9	32
12	Utilization of Carbon-Based Nanomaterials and Plate-Fin Networks in a Cold PCM Container with Application in Air Conditioning of Buildings. Nanomaterials, 2022, 12, 1927.	1.9	23
13	Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. Nanomaterials, 2021, 11, 454.	1.9	38
14	Assessment of economic, thermal and hydraulic performances a corrugated helical heat exchanger filled with non-Newtonian nanofluid. Scientific Reports, 2021, 11, 11568.	1.6	17
15	Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles. Scientific Reports, 2021, 11, 11455.	1.6	20
16	Application of Cylindrical Fin to Improve Heat Transfer Rate in Micro Heat Exchangers Containing Nanofluid under Magnetic Field. Processes, 2021, 9, 1278.	1.3	2
17	Natural Convection and Entropy Generation of MgO/Water Nanofluids in the Enclosure under a Magnetic Field and Radiation Effects. Processes, 2021, 9, 1277.	1.3	32
18	Nanoparticles in drilling fluid: A review of the state-of-the-art. Journal of Materials Research and Technology, 2021, 13, 737-753.	2.6	73

#	Article	IF	Citations
19	Loading PCM Into Buildings Envelope to Decrease Heat Gain-Performing Transient Thermal Analysis on Nanofluid Filled Solar System. Frontiers in Energy Research, 2021, 9, .	1.2	36
20	Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: Experimental study and theoretical prediction of thermal conductivity. Powder Technology, 2021, 386, 51-59.	2.1	59
21	Effects of Different Wall Shapes on Thermal-Hydraulic Characteristics of Different Channels Filled with Water Based Graphite-SiO2 Hybrid Nanofluid. Processes, 2021, 9, 1253.	1.3	30
22	Effect of Straight, Inclined and Curved Fins on Natural Convection and Entropy Generation of a Nanofluid in a Square Cavity Influenced by a Magnetic Field. Processes, 2021, 9, 1339.	1.3	13
23	The effect of nanoparticle shape on alumina/EG-water (50:50) nanofluids flow within a solar collector: Entropy and exergy investigation. Case Studies in Thermal Engineering, 2021, 28, 101510.	2.8	15
24	A Review of the Methods of Modeling Multi-Phase Flows within Different Microchannels Shapes and Their Applications. Micromachines, 2021, 12, 1113.	1.4	13
25	Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. Journal of Cleaner Production, 2021, 320, 128573.	4.6	183
26	Numerical study of the effect of graphene nanoparticles in calcium chloride hexahydrate -based phase change material on melting and freezing time in a circular cavity with a triangular obstacle. Journal of Energy Storage, 2021, 43, 103243.	3.9	12
27	The use of nanofluids in thermosyphon heat pipe: A comprehensive review. Powder Technology, 2021, 394, 250-269.	2.1	43
28	Study on the Effect of Hole Size of Trombe Wall in the Presence of Phase Change Material for Different Times of a Day in Winter and Summer. Processes, 2021, 9, 1886.	1.3	5
29	Numerical Study of Natural Convection of Biological Nanofluid Flow Prepared from Tea Leaves under the Effect of Magnetic Field. Processes, 2021, 9, 1824.	1.3	2
30	Applying Artificial Neural Network and Response Surface Method to Forecast the Rheological Behavior of Hybrid Nano-Antifreeze Containing Graphene Oxide and Copper Oxide Nanomaterials. Sustainability, 2021, 13, 11505.	1.6	8
31	Energy, exergy and economics study of a solar/thermal panel cooled by nanofluid. Case Studies in Thermal Engineering, 2021, 28, 101481.	2.8	24
32	Impact of phase change material on the amount of emission in the double-glazed window frame for different window angles. Journal of Energy Storage, 2021, 44, 103320.	3.9	9
33	Simulation of melting and solidification of graphene nanoparticles-PCM inside a dual tube heat exchanger with extended surface. Journal of Energy Storage, 2021, 44, 103265.	3.9	30
34	Correlations for Total Entropy Generation and Bejan Number for Free Convective Heat Transfer of an Eco-Friendly Nanofluid in a Rectangular Enclosure under Uniform Magnetic Field. Processes, 2021, 9, 1930.	1.3	0
35	Simulation of Nanofluid Flow in a Micro-Heat Sink With Corrugated Walls Considering the Effect of Nanoparticle Diameter on Heat Sink Efficiency. Frontiers in Energy Research, 2021, 9, .	1.2	4
36	Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles. Scientific Reports, 2020, 10, 11216.	1.6	47

#	Article	IF	Citations
37	A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and without Nanofluid. Processes, 2020, 8, 1011.	1.3	80
38	Incorporation of Horizontal Fins into a PCM-Based Heat Sink to Enhance the Safe Operation Time: Applicable in Electronic Device Cooling. Applied Sciences (Switzerland), 2020, 10, 6308.	1.3	26
39	Nanotechnology in Enhanced Oil Recovery. Processes, 2020, 8, 1073.	1.3	78
40	Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders. Cleaner Engineering and Technology, 2020, 1, 100028.	2.1	15
41	Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 2020, 268, 122128.	4.6	120
42	Mechanistic Modeling of Nanoparticles-Assisted Surfactant Flood. Arabian Journal for Science and Engineering, 2018, 43, 6609-6625.	1.7	16
43	Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 339-350.	2.3	119
44	Synthesis and properties of polyacrylamide by nanoparticles, effect nanoclay on stability polyacrylamide solution. Micro and Nano Letters, 2017, 12, 40-44.	0.6	39
45	Silica Nanoparticle Enhancement in the Efficiency of Surfactant Flooding of Heavy Oil in a Glass Micromodel. Industrial & Diplication of Surfactant Flooding of Heavy Oil in a Glass	1.8	77
46	Evaluation of Clay and Fumed Silica Nanoparticles on Adsorption of Surfactant Polymer during Enhanced Oil Recovery. Journal of the Japan Petroleum Institute, 2017, 60, 85-94.	0.4	48
47	Effect of nano titanium dioxide on heavy oil recovery during polymer flooding. Petroleum Science and Technology, 2016, 34, 633-641.	0.7	70
48	Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding. Arabian Journal for Science and Engineering, 2016, 41, 2731-2750.	1.1	44
49	Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Applied Nanoscience (Switzerland), 2016, 6, 923-931.	1.6	34
50	Improvement of heavy oil recovery and role of nanoparticles of clay in the surfactant flooding process. Petroleum Science and Technology, 2016, 34, 1397-1405.	0.7	21
51	A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. International Nano Letters, 2016, 6, 129-138.	2.3	167
52	Application of nano-fumed silica in heavy oil recovery. Petroleum Science and Technology, 2016, 34, 12-18.	0.7	40
53	A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding. International Nano Letters, 2016, 6, 1-10.	2.3	156
54	Effects of titanium dioxide nanoparticles on the efficiency of surfactant flooding of heavy oil in a glass micromodel. Petroleum Science and Technology, 2016, 34, 260-267.	0.7	48

#	Article	IF	CITATIONS
55	A New Thermal Method Concept for IOR from Oil Reservoir Using Optimized In-situ Combustion. , 2016, , .		3
56	Improved Heavy Oil Recovery by Nanofluid Surfactant Flooding - An Experimental Study. , 2016, , .		17
57	Thermal Resistance and Application of Nanoclay on Polymer Flooding in Heavy Oil Recovery. Petroleum Science and Technology, 2015, 33, 1580-1586.	0.7	39
58	Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery. Journal of Petroleum Exploration and Production, 2015, 5, 189-196.	1.2	57
59	Effect of Nanoclay on Heavy Oil Recovery During Polymer Flooding. Petroleum Science and Technology, 2015, 33, 999-1007.	0.7	56
60	An Experimental Study of Surfactant Polymer for Enhanced Heavy Oil Recovery Using a Glass Micromodel by Adding Nanoclay. Petroleum Science and Technology, 2015, 33, 1410-1417.	0.7	55
61	Experimental Investigation of Polymer Solutions Used in Enhanced Oil Recovery - Thermal properties Improved by Nanoclay. , 2015, , .		12
62	Application of TiO2 and fumed silica nanoparticles and improve the performance of drilling fluids. AIP Conference Proceedings, 2014, , .	0.3	32
63	Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2. International Nano Letters, $2014, 4, 1$.	2.3	97
64	An experimental investigation of the enhanced oil recovery and improved performance of drilling fluids using titanium dioxide and fumed silica nanoparticles. Journal of Nanostructure in Chemistry, 2013, 3, 1.	5.3	107
65	An experimental investigation of the enhanced oil recovery and improved performance of drilling fluids using titanium dioxide and fumed silica nanoparticles. , 2013, 3, 1.		1