Francesca Algieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520384/publications.pdf

Version: 2024-02-01

41 papers

1,952 citations

218592 26 h-index 265120 42 g-index

42 all docs

42 docs citations 42 times ranked 3362 citing authors

#	Article	IF	CITATIONS
1	Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients, 2016, 8, 211.	1.7	179
2	Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Frontiers in Microbiology, 2017, 8, 1274.	1.5	145
3	Differential intestinal antiâ€inflammatory effects of <i>Lactobacillus fermentum</i> and <i>Lactobacillus salivarius</i> in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Molecular Nutrition and Food Research, 2017, 61, 1700144.	1.5	135
4	Chronic Hydroxychloroquine Improves Endothelial Dysfunction and Protects Kidney in a Mouse Model of Systemic Lupus Erythematosus. Hypertension, 2014, 64, 330-337.	1.3	110
5	Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. Journal of Nutritional Biochemistry, 2018, 61, 129-139.	1.9	98
6	<i>Lactobacillus fermentum</i> Improves Tacrolimusâ€Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Molecular Nutrition and Food Research, 2018, 62, e1800033.	1.5	71
7	The Administration of Escherichia coli Nissle 1917 Ameliorates Development of DSS-Induced Colitis in Mice. Frontiers in Pharmacology, 2018, 9, 468.	1.6	68
8	Pea (<i>Pisum sativum</i> L.) seed albumin extracts show antiâ€inflammatory effect in the DSS model of mouse colitis. Molecular Nutrition and Food Research, 2015, 59, 807-819.	1.5	66
9	Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L Journal of Ethnopharmacology, 2016, 190, 142-158.	2.0	64
10	Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats. International Journal of Nanomedicine, 2014, 9, 4507.	3.3	62
11	The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacological Research, 2019, 150, 104487.	3.1	59
12	Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British Journal of Pharmacology, 2020, 177, 2006-2023.	2.7	57
13	Intestinal anti-inflammatory effects of Passiflora edulis peel in the dextran sodium sulphate model of mouse colitis. Journal of Functional Foods, 2016, 26, 565-576.	1.6	55
14	Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): In vitro and in vivo evidences. Journal of Ethnopharmacology, 2016, 192, 309-319.	2.0	53
15	Immunomodulatory properties of <i>Olea europaea</i> leaf extract in intestinal inflammation. Molecular Nutrition and Food Research, 2017, 61, 1601066.	1.5	48
16	Botanical Drugs as an Emerging Strategy in Inflammatory Bowel Disease: A Review. Mediators of Inflammation, 2015, 2015, 1-14.	1.4	47
17	Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model. Frontiers in Microbiology, 2016, 7, 868.	1.5	45
18	Intestinal anti-inflammatory activity of the Serpylli herba extract in experimental models of rodent colitis. Journal of Crohn's and Colitis, 2014, 8, 775-788.	0.6	44

#	Article	IF	CITATIONS
19	Intestinal anti-inflammatory activity of hydroalcoholic extracts of Phlomis purpurea L. and Phlomis lychnitis L. in the trinitrobenzenesulphonic acid model of rat colitis Journal of Ethnopharmacology, 2013, 146, 750-759.	2.0	41
20	Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats. International Journal of Nanomedicine, 2016, Volume 11, 5945-5958.	3.3	40
21	The Immunomodulatory Properties of Propylâ€Propane Thiosulfonate Contribute to its Intestinal Antiâ€Inflammatory Effect in Experimental Colitis. Molecular Nutrition and Food Research, 2019, 63, e1800653.	1.5	40
22	Intestinal Anti-inflammatory Effects of Oligosaccharides Derived from Lactulose in the Trinitrobenzenesulfonic Acid Model of Rat Colitis. Journal of Agricultural and Food Chemistry, 2014, 62, 4285-4297.	2.4	39
23	Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine, 2016, 23, 901-913.	2.3	32
24	Phytochemical profiling of antiâ€inflammatory <i>Lavandula</i> extracts <i>via</i> RP–HPLC–DAD–QTOF–MS and –MS/MS: Assessment of their qualitative and quantitative differences. Electrophoresis, 2018, 39, 1284-1293.	1.3	29
25	The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Research International, 2017, 96, 64-71.	2.9	27
26	Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis. International Journal of Pharmaceutics, 2016, 511, 1-9.	2.6	26
27	Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice. PLoS ONE, 2017, 12, e0185382.	1.1	25
28	A new therapeutic association to manage relapsing experimental colitis: Doxycycline plus Saccharomyces boulardii. Pharmacological Research, 2015, 97, 48-63.	3.1	23
29	Intestinal anti-inflammatory activity of calcium pyruvate in the TNBS model of rat colitis: Comparison with ethyl pyruvate. Biochemical Pharmacology, 2016, 103, 53-63.	2.0	21
30	Functional Plasticity of Th17 Cells: Implications in Gastrointestinal Tract Function. International Reviews of Immunology, 2013, 32, 493-510.	1.5	19
31	Intestinal anti-inflammatory effects of probiotics inÂDNBS-colitis via modulation of gut microbiota and microRNAs. European Journal of Nutrition, 2021, 60, 2537-2551.	1.8	18
32	Intestinal anti-inflammatory activity of the polyphenolic-enriched extract Amanda \hat{A}^{\odot} in the trinitrobenzenesulphonic acid model of rat colitis. Journal of Functional Foods, 2014, 11, 449-459.	1.6	15
33	High-Throughput Screening Platform for the Discovery of New Immunomodulator Molecules from Natural Product Extract Libraries. Journal of Biomolecular Screening, 2016, 21, 567-578.	2.6	15
34	Exposure to bis(maltolato)oxovanadium(IV) increases levels of hepcidin mRNA and impairs the homeostasis of iron but not that of manganese. Food and Chemical Toxicology, 2014, 73, 113-118.	1.8	14
35	Antinociceptive and Anti-Inflammatory Effects of Total Alkaloid Extract from <i>Fumaria capreolata < /i>. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.</i>	0.5	11
36	Calcium Pyruvate Exerts Beneficial Effects in an Experimental Model of Irritable Bowel Disease Induced by DCA in Rats. Nutrients, 2019, 11, 140.	1.7	8

#	Article	IF	CITATIONS
37	Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production. Frontiers in Pharmacology, 2017, 8, 202.	1.6	4
38	Intestinal anti-inflammatory activity of the total alkaloid fraction from Fumaria capreolata in the DSS model of colitis in mice. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127414.	1.0	4
39	Vanadium Decreases Hepcidin mRNA Gene Expression in STZ-Induced Diabetic Rats, Improving the Anemic State. Nutrients, 2021, 13, 1256.	1.7	4
40	Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients, 2021, 13, 1860.	1.7	3
41	Metabolomic analysis of <i>Lavandula dentata</i> L. and <i>Lavandula stoechas</i> L. extracts by LC-QTOF/MS experiments and multivariate analysis techniques as a chemotaxonomical tool. Plant Biosystems, 2020, 154, 231-240.	0.8	2