
Jacob C Zbinden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	12.4	81
2	Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomaterialia, 2019, 94, 183-194.	8.3	34
3	The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomaterialia, 2020, 115, 176-184.	8.3	33
4	Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. Npj Regenerative Medicine, 2021, 6, 38.	5.2	23
5	Early cessation of pressure garment therapy results in scar contraction and thickening. PLoS ONE, 2018, 13, e0197558.	2.5	22
6	Role of Early Application of Pressure Garments following Burn Injury and Autografting. Plastic and Reconstructive Surgery, 2019, 143, 310e-321e.	1.4	19
7	Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Advanced Healthcare Materials, 2020, 9, e2001093.	7.6	18
8	Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Communications Medicine, 2022, 2, .	4.2	18
9	Improved Scar Outcomes with Increased Daily Duration of Pressure Garment Therapy. Advances in Wound Care, 2020, 9, 453-461.	5.1	11
10	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	3.1	11
11	Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Scientific Reports, 2021, 11, 8037.	3.3	11
12	Tissue Engineered Vascular Graft Recipient Interleukin 10 Status Is Critical for Preventing Thrombosis. Advanced Healthcare Materials, 2020, 9, e2001094.	7.6	8
13	The evaluation of a tissue-engineered cardiac patch seeded with hips derived cardiac progenitor cells in a rat left ventricular model. PLoS ONE, 2020, 15, e0234087.	2.5	6
14	Zoledronate alters natural progression of tissueâ€engineered vascular grafts. FASEB Journal, 2021, 35, e21849.	0.5	3
15	The lysosomal trafficking regulator is necessary for normal wound healing. Wound Repair and Regeneration, 2021, 30, 82.	3.0	1