Miklós Szakáll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519906/publications.pdf

Version: 2024-02-01

516710 526287 32 800 16 27 citations g-index h-index papers 45 45 45 966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Melting of atmospheric ice particles. , 2022, , 423-471.		O
2	Vertical Wind Tunnel Experiments and a Theoretical Study on the Microphysics of Melting Low-Density Graupel. Journals of the Atmospheric Sciences, 2022, 79, 1069-1087.	1.7	1
3	Comparative study on immersion freezing utilizing single-droplet levitation methods. Atmospheric Chemistry and Physics, 2021, 21, 3289-3316.	4.9	4
4	Twenty Years of Airborne Water Vapor and Total Water Measurements of a Diode Laser Based Photoacoustic Instruments. Frontiers in Physics, 2020, 8, .	2.1	2
5	A Wind Tunnel Investigation into the Aerodynamics of Lobed Hailstones. Atmosphere, 2020, 11, 494.	2.3	3
6	Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals. Atmospheric Chemistry and Physics, 2020, 20, 14889-14901.	4.9	5
7	The Effect of Turbulence on the Accretional Growth of Graupel. Journals of the Atmospheric Sciences, 2019, 76, 3047-3061.	1.7	6
8	A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Atmospheric Chemistry and Physics, 2019, 19, 4823-4849.	4.9	48
9	The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements. Atmospheric Measurement Techniques, 2018, 11, 6231-6257.	3.1	82
10	A Comprehensive Observational Study of Graupel and Hail Terminal Velocity, Mass Flux, and Kinetic Energy. Journals of the Atmospheric Sciences, 2018, 75, 3861-3885.	1.7	44
11	Wind tunnel study on the size distribution of droplets after collision induced breakup of levitating water drops. Atmospheric Research, 2018, 213, 51-56.	4.1	12
12	Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents. Atmospheric Chemistry and Physics, 2017, 17, 9717-9732.	4.9	12
13	Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft. Atmospheric Measurement Techniques, 2016, 9, 5135-5162.	3.1	39
14	A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops. Atmospheric Research, 2014, 142, 67-78.	4.1	19
15	Shapes and oscillations of raindrops with reduced surface tensions: Measurements at the Mainz vertical wind tunnel. Atmospheric Research, 2013, 119, 38-45.	4.1	12
16	Shapes and oscillations of falling raindrops — A review. Atmospheric Research, 2010, 97, 416-425.	4.1	100
17	Drop Shapes and Axis Ratio Distributions: Comparison between 2D Video Disdrometer and Wind-Tunnel Measurements. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1427-1432.	1.3	59
18	A Wind Tunnel Study on the Shape, Oscillation, and Internal Circulation of Large Raindrops with Sizes between 2.5 and 7.5 mm. Journals of the Atmospheric Sciences, 2009, 66, 755-765.	1.7	67

#	Article	IF	CITATIONS
19	Novel resonance profiling and tracking method for photoacoustic measurements. Applied Physics B: Lasers and Optics, 2009, 94, 691-698.	2.2	13
20	Airborne measurements of the nitric acid partitioning in persistent contrails. Atmospheric Chemistry and Physics, 2009, 9, 8189-8197.	4.9	18
21	On the temperature dependent characteristics of a photoacoustic water vapor detector for airborne application. Infrared Physics and Technology, 2007, 51, 113-121.	2.9	25
22	On the pressure dependent sensitivity of a photoacoustic water vapor detector using active laser modulation control. Infrared Physics and Technology, 2006, 48, 192-201.	2.9	20
23	Photoacoustic system for on-line process monitoring of hydrogen sulfide (H2S) concentration in natural gas streams. Applied Physics B: Lasers and Optics, 2006, 85, 315-321.	2.2	69
24	Diode Laser Based Photoacoustic Water Vapor Detection System for Atmospheric Research. Applied Spectroscopy, 2004, 58, 792-798.	2.2	20
25	Diode laser based photoacoustic humidity sensors. Sensors and Actuators B: Chemical, 2003, 91, 219-226.	7.8	37
26	External Cavity Diode Laser Based Photoacoustic Detection of CO2 at 1.43 \hat{l} 4m: The Effect of Molecular Relaxation. Applied Spectroscopy, 2003, 57, 900-905.	2.2	23
27	Evaluation of a Photoacoustic Detector for Water Vapor Measurements under Simulated Tropospheric/Lower Stratospheric Conditions. Environmental Science & Environmental Science & 2001, 35, 4881-4885.	10.0	22
28	A high-sensitivity, near-infrared tunable-diode-laser-based photoacoustic water-vapour-detection system for automated operation. Measurement Science and Technology, 1999, 10, 999-1003.	2.6	25
29	Gas-detection instrument based on external-cavity diode lasers and photoacoustic detectors., 1998, 3423, 238.		0
30	Development and application of external-cavity diode laser systems for photoacoustic gas detection. , 1998, , .		0
31	Possible application areas of a diode-laser-based photoacoustic gas detection method. , 1998, , .		0
32	Optimization of diode-laser-based photoacoustic laser systems for high-sensitivity detection of water vapor, methane, and carbon dioxide. , 1998, , .		0