Josh Strable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519575/publications.pdf

Version: 2024-02-01

27	908	12	23
papers	citations	h-index	g-index
30	30	30	1486
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An <i>in situ</i> sequencing approach maps <i>PLASTOCHRON1</i> at the boundary between indeterminate and determinate cells. Plant Physiology, 2022, 188, 782-794.	4.8	24
2	The FUSED LEAVES1â€ <i>ADHERENT1</i> regulatory module is required for maize cuticle development and organ separation. New Phytologist, 2021, 229, 388-402.	7.3	17
3	Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytologist, 2021, 230, 218-227.	7.3	10
4	Detecting Spaciotemporal Transcript Accumulation in Maize by RNA In Situ Hybridization. Bio-protocol, 2021, 11, .	0.4	2
5	A pointillist portrait of maize leaf protoplasts points to bundle sheath polarity and a potentially new path to phloem loading. Plant Cell, 2021, 33, 447-448.	6.6	O
6	Developmental genetics of maize vegetative shoot architecture. Molecular Breeding, 2021, 41, 1.	2.1	8
7	The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion in Plant Biology, 2021, 63, 102038.	7.1	16
8	The arches and spandrels of maize domestication, adaptation, and improvement. Current Opinion in Plant Biology, 2021, 64, 102124.	7.1	2
9	Distinct C ₄ subâ€types and C ₃ bundle sheath isolation in the Paniceae grasses. Plant Direct, 2021, 5, e373.	1.9	4
10	Gains in Grain Yield: A Pair of Spikelets Makes All the Difference, Even When One Is Sterile. Plant Cell, 2020, 32, 3378-3379.	6.6	0
11	Sugars Inform the Circadian Clock How to Shape Rice Shoots via the Strigolactone Pathway. Plant Cell, 2020, 32, 3043-3044.	6.6	2
12	Maize Introgression Library Provides Evidence for the Involvement of <i>liguleless1</i> in Resistance to Northern Leaf Blight. G3: Genes, Genomes, Genetics, 2020, 10, 3611-3622.	1.8	17
13	Cytokinin Signaling Patterns Maize Leaves, Otherwise Things Get Hairy and Frayed. Plant Cell, 2020, 32, 1348-1349.	6.6	2
14	Peptide-Receptor Signaling Pumps the Brakes on Auxin Biosynthesis and Ethylene Signaling to Harmonize Root Growth and Nodulation. Plant Cell, 2020, 32, 2675-2676.	6.6	O
15	Keeping the Ethylene Response Fluid: GDSL Lipase MHZ11 Modulates Sterol Levels and Ethylene Signaling in Rice Roots. Plant Cell, 2020, 32, 1352-1353.	6.6	O
16	Activate, Breakdown, Branch Out: CUC2/3-DA1-UBP15 Controls Axillary Meristem Initiation. Plant Cell, 2020, 32, 1782-1783.	6.6	2
17	Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33689-33699.	7.1	134
18	On the mechanisms of development in monocot and eudicot leaves. New Phytologist, 2019, 221, 706-724.	7.3	83

#	Article	IF	CITATIONS
19	Maize <i>YABBY</i> genes <i>drooping leaf1</i> and <i>drooping leaf2</i> regulate floret development and floral meristem determinacy. Development (Cambridge), 2019, 146, .	2.5	28
20	Maize <i>YABBY</i> Genes <i>drooping leaf1</i> and <i>drooping leaf2</i> Regulate Plant Architecture. Plant Cell, 2017, 29, 1622-1641.	6.6	128
21	Meristems take their cues from organ primordia. Nature Genetics, 2016, 48, 704-705.	21.4	1
22	Effects of 1-methylcyclopropene on flower senescence and petal abscission in Dianthus caryophyllus L Horticulture Environment and Biotechnology, 2015, 56, 786-792.	2.1	11
23	<i>PUNCTATE VASCULAR EXPRESSION1</i> Is a Novel Maize Gene Required for Leaf Pattern Formation That Functions Downstream of the Trans-Acting Small Interfering RNA Pathway Â. Plant Physiology, 2012, 159, 1453-1462.	4.8	6
24	WOX4 Promotes Procambial Development. Plant Physiology, 2010, 152, 1346-1356.	4.8	198
25	Microdissection of Shoot Meristem Functional Domains. PLoS Genetics, 2009, 5, e1000476.	3.5	73
26	Maize <i>(Zea mays):</i> A Model Organism for Basic and Applied Research in Plant Biology. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo132.	0.3	99
27	Microarray analysis of vegetative phase change in maize. Plant Journal, 2008, 56, 1045-1057.	5.7	37