Josh Strable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519575/publications.pdf Version: 2024-02-01

LOSH STDARLE

#	Article	IF	CITATIONS
1	WOX4 Promotes Procambial Development. Plant Physiology, 2010, 152, 1346-1356.	4.8	198
2	Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33689-33699.	7.1	134
3	Maize <i>YABBY</i> Genes <i>drooping leaf1</i> and <i>drooping leaf2</i> Regulate Plant Architecture. Plant Cell, 2017, 29, 1622-1641.	6.6	128
4	Maize <i>(Zea mays):</i> A Model Organism for Basic and Applied Research in Plant Biology. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo132.	0.3	99
5	On the mechanisms of development in monocot and eudicot leaves. New Phytologist, 2019, 221, 706-724.	7.3	83
6	Microdissection of Shoot Meristem Functional Domains. PLoS Genetics, 2009, 5, e1000476.	3.5	73
7	Microarray analysis of vegetative phase change in maize. Plant Journal, 2008, 56, 1045-1057.	5.7	37
8	Maize <i>YABBY</i> genes <i>drooping leaf1</i> and <i>drooping leaf2</i> regulate floret development and floral meristem determinacy. Development (Cambridge), 2019, 146, .	2.5	28
9	An <i>in situ</i> sequencing approach maps <i>PLASTOCHRON1</i> at the boundary between indeterminate and determinate cells. Plant Physiology, 2022, 188, 782-794.	4.8	24
10	Maize Introgression Library Provides Evidence for the Involvement of <i>liguleless1</i> in Resistance to Northern Leaf Blight. G3: Genes, Genomes, Genetics, 2020, 10, 3611-3622.	1.8	17
11	The FUSED LEAVES1â€ <i>ADHERENT1</i> regulatory module is required for maize cuticle development and organ separation. New Phytologist, 2021, 229, 388-402.	7.3	17
12	The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion in Plant Biology, 2021, 63, 102038.	7.1	16
13	Effects of 1-methylcyclopropene on flower senescence and petal abscission in Dianthus caryophyllus L Horticulture Environment and Biotechnology, 2015, 56, 786-792.	2.1	11
14	Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytologist, 2021, 230, 218-227.	7.3	10
15	Developmental genetics of maize vegetative shoot architecture. Molecular Breeding, 2021, 41, 1.	2.1	8
16	<i>PUNCTATE VASCULAR EXPRESSION1</i> Is a Novel Maize Gene Required for Leaf Pattern Formation That Functions Downstream of the Trans-Acting Small Interfering RNA Pathway Â. Plant Physiology, 2012, 159, 1453-1462.	4.8	6
17	Distinct C ₄ subâ€types and C ₃ bundle sheath isolation in the Paniceae grasses. Plant Direct, 2021, 5, e373.	1.9	4
18	Sugars Inform the Circadian Clock How to Shape Rice Shoots via the Strigolactone Pathway. Plant Cell, 2020, 32, 3043-3044.	6.6	2

JOSH STRABLE

#	Article	IF	CITATIONS
19	Cytokinin Signaling Patterns Maize Leaves, Otherwise Things Get Hairy and Frayed. Plant Cell, 2020, 32, 1348-1349.	6.6	2
20	Activate, Breakdown, Branch Out: CUC2/3-DA1-UBP15 Controls Axillary Meristem Initiation. Plant Cell, 2020, 32, 1782-1783.	6.6	2
21	Detecting Spaciotemporal Transcript Accumulation in Maize by RNA In Situ Hybridization. Bio-protocol, 2021, 11, .	0.4	2
22	The arches and spandrels of maize domestication, adaptation, and improvement. Current Opinion in Plant Biology, 2021, 64, 102124.	7.1	2
23	Meristems take their cues from organ primordia. Nature Genetics, 2016, 48, 704-705.	21.4	1
24	Gains in Grain Yield: A Pair of Spikelets Makes All the Difference, Even When One Is Sterile. Plant Cell, 2020, 32, 3378-3379.	6.6	0
25	Peptide-Receptor Signaling Pumps the Brakes on Auxin Biosynthesis and Ethylene Signaling to Harmonize Root Growth and Nodulation. Plant Cell, 2020, 32, 2675-2676.	6.6	0
26	Keeping the Ethylene Response Fluid: GDSL Lipase MHZ11 Modulates Sterol Levels and Ethylene Signaling in Rice Roots. Plant Cell, 2020, 32, 1352-1353.	6.6	0
27	A pointillist portrait of maize leaf protoplasts points to bundle sheath polarity and a potentially new path to phloem loading. Plant Cell, 2021, 33, 447-448.	6.6	0