Bailu Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519341/publications.pdf

Version: 2024-02-01

		686830	642321
39	691	13	23 g-index
papers	citations	h-index	g-index
	2.2		700
39	39	39	723
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Grid alignment in entorhinal cortex. Biological Cybernetics, 2012, 106, 483-506.	0.6	85
2	A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus, 2013, 23, 1410-1424.	0.9	77
3	Learning joint space–time–frequency features for EEG decoding on small labeled data. Neural Networks, 2019, 114, 67-77.	3.3	74
4	A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nature Neuroscience, 2018, 21, 985-995.	7.1	65
5	The role of competitive learning in the generation of DG fields from EC inputs. Cognitive Neurodynamics, 2009, 3, 177-187.	2.3	59
6	Self-organization of multiple spatial and context memories in the hippocampus. Neuroscience and Biobehavioral Reviews, 2012, 36, 1609-1625.	2.9	40
7	<scp>S</scp> elforganization of modular activity of grid cells. Hippocampus, 2017, 27, 1204-1213.	0.9	32
8	A Reinforcement Learning Neural Network for Robotic Manipulator Control. Neural Computation, 2018, 30, 1983-2004.	1.3	26
9	Group feature selection with multiclass support vector machine. Neurocomputing, 2018, 317, 42-49.	3.5	25
10	Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells. PLoS Computational Biology, 2014, 10, e1003558.	1.5	23
11	NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation. Neural Networks, 2020, 126, 21-35.	3.3	23
12	Cognitive Mapping Based on Conjunctive Representations of Space and Movement. Frontiers in Neurorobotics, 2017, 11, 61.	1.6	20
13	Grid cells on the ball. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P03013.	0.9	18
14	Two-dimensional forward-looking sonar image registration by maximization of peripheral mutual information. International Journal of Advanced Robotic Systems, 2017, 14, 172988141774627.	1.3	18
15	A brain-inspired compact cognitive mapping system. Cognitive Neurodynamics, 2021, 15, 91-101.	2.3	13
16	Mobile Robot Exploration Based on Rapidly-exploring Random Trees and Dynamic Window Approach. , 2019, , .		10
17	Local Autoencoding for Parameter Estimation in a Hidden Potts-Markov Random Field. IEEE Transactions on Image Processing, 2016, 25, 2324-2336.	6.0	9
18	Sample-Based Frontier Detection for Autonomous Robot Exploration. , 2018, , .		8

#	Article	IF	Citations
19	Grid maps for spaceflight, anyone? They are for free!. Behavioral and Brain Sciences, 2013, 36, 566-567.	0.4	7
20	A sampling-based multi-tree fusion algorithm for frontier detection. International Journal of Advanced Robotic Systems, 2019, 16, 172988141986542.	1.3	7
21	Characterization of exploratory patterns and hippocampal–prefrontal network oscillations during the emergence of free exploration. Science Bulletin, 2021, 66, 2238-2250.	4.3	7
22	Prior parameter estimation for Ising-MRF-based sonar image segmentation by local center-encoding. , 2015, , .		6
23	Probabilistic learning vector quantization on manifold of symmetric positive definite matrices. Neural Networks, 2021, 142, 105-118.	3.3	6
24	Gain-based Exploration: From Multi-armed Bandits to Partially Observable Environments. , 2007, , .		5
25	Learning Cognitive Map Representations for Navigation by Sensory–Motor Integration. IEEE Transactions on Cybernetics, 2022, 52, 508-521.	6.2	5
26	Label field initialization for MRF-based sonar image segmentation by selective autoencoding. , 2016, , .		4
27	Combined optimisation of waveform and quantisation thresholds for multistatic radar systems. IET Signal Processing, 2018, 12, 559-565.	0.9	4
28	Unsupervised Feature Learning for Visual Place Recognition in Changing Environments. , 2019, , .		3
29	Learning allocentric representations of space for navigation. Neurocomputing, 2021, 453, 579-589.	3.5	3
30	A theory of geometry representations for spatial navigation. Progress in Neurobiology, 2022, 211, 102228.	2.8	3
31	The DIAMOND Model: Deep Recurrent Neural Networks for Self-Organizing Robot Control. Frontiers in Neurorobotics, 2020, 14, 62.	1.6	2
32	Abnormal Reactivity of Brain Oscillations to Visual Search Target in Children With Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 522-530.	1.1	2
33	A prey-predator model for efficient robot tracking. , 2017, , .		1
34	Model learning based on grid cell representations. , 2017, , .		1
35	Robot Exploration by Subjectively Maximizing Objective Information Gain. , 0, , .		0
36	Self-organization of hippocampal representations in large environments. , 2015, , .		0

#	Article	IF	CITATIONS
37	Video data for the cognitive mapping process of NeuroBayesSLAM system. Data in Brief, 2020, 30, 105637.	0.5	O
38	Grid Cells Lose Coherence in Realistic Environments. , 0, , .		0
39	Entorhinal-hippocampal interactions lead to globally coherent representations of space. Current Research in Neurobiology, 2022, 3, 100035.	1.1	0