Bradley Doble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519316/publications.pdf Version: 2024-02-01

RRADIEV DORLE

#	Article	IF	CITATIONS
1	The ground state of embryonic stem cell self-renewal. Nature, 2008, 453, 519-523.	13.7	3,057
2	GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science, 2003, 116, 1175-1186.	1.2	1,862
3	A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 2005, 438, 873-877.	13.7	728
4	Functional Redundancy of GSK-3α and GSK-3β in Wnt/β-Catenin Signaling Shown by Using an Allelic Series of Embryonic Stem Cell Lines. Developmental Cell, 2007, 12, 957-971.	3.1	428
5	Phosphorylation by p38 MAPK as an Alternative Pathway for GSK3β Inactivation. Science, 2008, 320, 667-670.	6.0	414
6	Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development (Cambridge), 2008, 135, 367-375.	1.2	381
7	GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 2009, 12, 1390-1397.	7.1	355
8	Glycogen Synthase Kinase 3α-Specific Regulation of Murine Hepatic Glycogen Metabolism. Cell Metabolism, 2007, 6, 329-337.	7.2	271
9	Glycogen Synthase Kinase-3 - An Overview of An Over-Achieving Protein Kinase. Current Drug Targets, 2006, 7, 1377-1388.	1.0	253
10	Tissue-Specific Role of Glycogen Synthase Kinase 3β in Glucose Homeostasis and Insulin Action. Molecular and Cellular Biology, 2008, 28, 6314-6328.	1.1	221
11	β-Catenin Enhances Oct-4 Activity and Reinforces Pluripotency through a TCF-Independent Mechanism. Cell Stem Cell, 2011, 8, 214-227.	5.2	205
12	Deletion of GSK-3β in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. Journal of Clinical Investigation, 2008, 118, 3609-3618.	3.9	204
13	The ε Subtype of Protein Kinase C Is Required for Cardiomyocyte Connexin-43 Phosphorylation. Circulation Research, 2000, 86, 293-301.	2.0	175
14	The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Molecular and Cellular Biochemistry, 2003, 242, 35-38.	1.4	172
15	Prevention of Amino Acid Conversion in SILAC Experiments with Embryonic Stem Cells. Molecular and Cellular Proteomics, 2008, 7, 1587-1597.	2.5	172
16	R-spondin1 Is a High Affinity Ligand for LRP6 and Induces LRP6 Phosphorylation and β-Catenin Signaling. Journal of Biological Chemistry, 2007, 282, 15903-15911.	1.6	169
17	Role of Glycogen Synthase Kinase-3 in Cell Fate and Epithelial-Mesenchymal Transitions. Cells Tissues Organs, 2007, 185, 73-84.	1.3	162
18	Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Molecular Brain, 2009, 2, 35.	1.3	162

BRADLEY DOBLE

#	Article	IF	CITATIONS
19	Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. Journal of Bacteriology, 1988, 170, 4415-4419.	1.0	144
20	Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword?. Biochemical Society Transactions, 2004, 32, 803-808.	1.6	137
21	IL-17 Receptor Signaling Inhibits C/EBPÎ ² by Sequential Phosphorylation of the Regulatory 2 Domain. Science Signaling, 2009, 2, ra8.	1.6	118
22	Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. Journal of Circadian Rhythms, 2014, 5, 3.	2.9	110
23	Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. Journal of Cell Science, 2004, 117, 507-514.	1.2	105
24	Selective Monoclonal Antibody Recognition and Cellular Localization of an Unphosphorylated Form of Connexin43. Experimental Cell Research, 1997, 236, 127-136.	1.2	104
25	Genetic Deficiency of Glycogen Synthase Kinase-3Î ² Corrects Diabetes in Mouse Models of Insulin Resistance. PLoS Biology, 2008, 6, e37.	2.6	96
26	Fibroblast Growth Factor-2 Decreases Metabolic Coupling and Stimulates Phosphorylation as Well as Masking of Connexin43 Epitopes in Cardiac Myocytes. Circulation Research, 1996, 79, 647-658.	2.0	89
27	Basic fibroblast growth factor stimulates connexin-43 expression and intercellular communication of cardiac fibroblasts. Molecular and Cellular Biochemistry, 1995, 143, 81-87.	1.4	86
28	The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Molecular and Cellular Biochemistry, 2003, 242, 35-8.	1.4	86
29	Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1071-H1080.	1.5	80
30	Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci. Journal of Biological Chemistry, 2010, 285, 41337-41347.	1.6	80
31	The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. , 2003, , 35-38.		64
32	FGF-2-induced Negative Inotropism and Cardioprotection are Inhibited by Chelerythrine: Involvement of Sarcolemmal Calcium-independent Protein Kinase C. Journal of Molecular and Cellular Cardiology, 1998, 30, 2695-2709.	0.9	59
33	GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice. Journal of Clinical Investigation, 2010, 120, 2280-2291.	3.9	54
34	Medulloblastoma stem cells: where development and cancer cross pathways. Pediatric Research, 2012, 71, 516-522.	1.1	52
35	GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. Cancer Cell, 2016, 29, 61-74.	7.7	52
36	Over-expression of CUG- or AUG-initiated Forms of Basic Fibroblast Growth Factor in Cardiac Myocytes Results in Similar Effects on Mitosis and Protein Synthesis but Distinct Nuclear Morphologies. Journal of Molecular and Cellular Cardiology, 1994, 26, 1045-1060.	0.9	51

BRADLEY DOBLE

#	Article	IF	CITATIONS
37	Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells. Clinical Cancer Research, 2015, 21, 5324-5337.	3.2	48
38	Regulation of Basic Fibroblast Growth Factor (BFGF) and FGF Receptors in the Heart. Annals of the New York Academy of Sciences, 1995, 752, 353-369.	1.8	39
39	Perinatal Phenotype and Hypothyroidism Are Associated with Elevated Levels of 21.5- to 22-kDa Basic Fibroblast Growth Factor in Cardiac Ventricles. Developmental Biology, 1993, 157, 507-516.	0.9	34
40	A Single TCF Transcription Factor, Regardless of Its Activation Capacity, Is Sufficient for Effective Trilineage Differentiation of ESCs. Cell Reports, 2017, 20, 2424-2438.	2.9	34
41	Wnt activation as a therapeutic strategy in medulloblastoma. Nature Communications, 2020, 11, 4323.	5.8	34
42	Medulloblastoma stem cells: Modeling tumor heterogeneity. Cancer Letters, 2013, 338, 23-31.	3.2	32
43	A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells. Oncogene, 2020, 39, 1590-1599.	2.6	31
44	Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Molecular and Cellular Biology, 2015, 35, 3029-3043.	1.1	27
45	Basic Fibroblast Growth Factor in Cultured Cardiac Myocytes. Annals of the New York Academy of Sciences, 1991, 638, 244-255.	1.8	26
46	CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro. Journal of Cellular Physiology, 2001, 186, 457-467.	2.0	22
47	BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene, 2019, 38, 1702-1716.	2.6	20
48	Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochemical and Biophysical Research Communications, 1990, 173, 1116-1122.	1.0	18
49	Ectopic γ-catenin Expression Partially Mimics the Effects of Stabilized β-catenin on Embryonic Stem Cell Differentiation. PLoS ONE, 2013, 8, e65320.	1.1	18
50	Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. Journal of Thrombosis and Haemostasis, 2021, 19, 547-561.	1.9	15
51	Exploring Pluripotency with Chemical Genetics. Cell Stem Cell, 2009, 4, 98-100.	5.2	13
52	Cardiomyocyte Gap Junctions: A Target of Growth-Promoting Signaling. Trends in Cardiovascular Medicine, 1998, 8, 180-187.	2.3	11
53	Basic fibroblast growth factor in cardiac myocytes: expression and effects. Developments in Cardiovascular Medicine, 1993, , 55-75.	0.1	11
54	Inhibition of TGF? signaling potentiates the FGF-2-induced stimulation of cardiomyocyte DNA synthesis. Cardiovascular Research, 2004, 64, 516-525.	1.8	10

BRADLEY DOBLE

#	Article	IF	CITATIONS
55	β-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	4.7	10
56	Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/ÄZ²-Catenin Signaling Pathways. Frontiers in Endocrinology, 2014, 5, 133.	1.5	8
57	Glycogen synthase kinase-3 (Gsk-3) plays a fundamental role in maintaining DNA methylation at imprinted loci in mouse embryonic stem cells. Molecular Biology of the Cell, 2015, 26, 2139-2150.	0.9	7
58	The responses of neural stem cells to the level of GSK-3 depend on the tissue of origin. Biology Open, 2013, 2, 812-821.	0.6	6
59	TCF/LEF regulation of the topologically associated domain ADI promotes mESCs to exit the pluripotent ground state. Cell Reports, 2021, 36, 109705.	2.9	4
60	Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Advances, 2021, 5, 3120-3133.	2.5	2
61	Endogenous Bioid Elucidates TCF7L1 Interactome Modulation Upon GSK-3 Inhibition in Mouse ESCs. SSRN Electronic Journal, 0, , .	0.4	1
62	Effects of Ischemia on Cardiomyocyte Connexin-43 Distribution and Phosphorylation Studied in in vivo and in vitro Models. Progress in Experimental Cardiology, 2004, , 257-268.	0.0	0
63	Abstract 5831: Activated Wnt signaling for the treatment of recurrent medulloblastoma. , 2017, , .		0
64	Abstract 148: Canonical Wnt activation as a therapeutic strategy in pediatric medulloblastoma. , 2018, ,		0