
Weria Weisany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2519205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 2021, 111, 106394.	10.7	82
2	Effects of Zinc Application on Growth, Absorption and Distribution of Mineral Nutrients Under Salinity Stress in Soybean (<i>Glycine Max</i> L.). Journal of Plant Nutrition, 2014, 37, 2255-2269.	1.9	60
3	Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis, 2012, 56, 5-18.	2.3	48
4	Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products, 2015, 77, 295-306.	5.2	48
5	Response of maize (<i>Zea mays</i> L.) to potassium nano-silica application under drought stress. Journal of Plant Nutrition, 2020, 43, 1205-1216.	1.9	38
6	Enhancement of the antifungal activity of thyme and dill essential oils against Colletotrichum nymphaeae by nano-encapsulation with copper NPs. Industrial Crops and Products, 2019, 132, 213-225.	5.2	37
7	Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, 2022, 303, 102655.	14.7	37
8	Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Industrial Crops and Products, 2021, 160, 113163.	5.2	33
9	Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environmental Science and Pollution Research, 2022, 29, 17476-17486.	5.3	31
10	Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercropping system. Annals of Applied Biology, 2016, 169, 384-397.	2.5	30
11	Nano silver-encapsulation of Thymus daenensis and Anethum graveolens essential oils enhances antifungal potential against strawberry anthracnose. Industrial Crops and Products, 2019, 141, 111808.	5.2	28
12	Some physiological responses of chickpea cultivars to arbuscular mycorrhiza under drought stress. Russian Journal of Plant Physiology, 2012, 59, 708-716.	1.1	26
13	Funneliformis mosseae alters seed essential oil content and composition of dill in intercropping with common bean. Industrial Crops and Products, 2016, 79, 29-38.	5.2	24
14	Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress. Molecules, 2022, 27, 3083.	3.8	20
15	Bio-organic fertilizers induce biochemical changes and affect seed oil fatty acids composition in black cumin (Nigella sativa Linn). Industrial Crops and Products, 2021, 164, 113383.	5.2	16
16	Phenology, Physiology, and Fatty Acid Profile of Canola (Brassica napus L.) under Agronomic Management Practices (Direct Seeding and Transplanting) and Zinc Foliar Application. Journal of Soil Science and Plant Nutrition, 2021, 21, 1735-1744.	3.4	15
17	Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae. Industrial Crops and Products, 2016, 90, 126-134.	5.2	14
18	Can arbuscular mycorrhizal fungi improve competitive ability of dill+common bean intercrops against weeds?. European Journal of Agronomy, 2016, 75, 60-71.	4.1	13

WERIA WEISANY

#	Article	IF	CITATIONS
19	Changes in Growth and Nutrient Status of Maize (Zea mays L.) in Response to Two Zinc Sources Under Drought Stress. Journal of Soil Science and Plant Nutrition, 2021, 21, 3367-3377.	3.4	12
20	Changes in the Fatty Acid and Morphophysiological Traits of Safflower (Carthamus tinctorius L.) Cultivars as Response to Auxin Under Water-Deficit Stress. Journal of Soil Science and Plant Nutrition, 2021, 21, 2164-2177.	3.4	10
21	Arbuscular mycorrhizal fungi species improve the fatty acids profile and nutrients status of soybean cultivars grown under drought stress. Journal of Applied Microbiology, 2022, 132, 2177-2188.	3.1	9
22	<i>Funneliformis mosseae</i> fungi changed essential oil composition in <i>Trigonella foenum graecum</i> L., <i>Coriandrum sativum</i> L. and <i>Nigella sativa</i> ÂL Journal of Essential Oil Research, 2017, 29, 276-287.	2.7	8
23	Coriander/soybean intercropping and mycorrhizae application lead to overyielding and changes in essential oil profiles. European Journal of Agronomy, 2021, 126, 126283.	4.1	8
24	Optimization and quality attributes of novel toast breads developed based on the antistaling watermelon rind powder. Journal of Agriculture and Food Research, 2020, 2, 100073.	2.5	7
25	Intercropping System and N2 Fixing Bacteria Can Increase Land Use Efficiency and Improve the Essential Oil Quantity and Quality of Sweet Basil (Ocimum basilicum L.). Frontiers in Plant Science, 2020, 11, 610026.	3.6	7
26	Yogurt fortification by microencapsulation of beetroot extract (<i>Beta vulgaris</i> L.) using maltodextrin, gum arabic, and whey protein isolate. Food Science and Nutrition, 2022, 10, 1875-1887.	3.4	5
27	Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops and Products, 2021, 172, 114069.	5.2	3
28	Glomus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle enhances nutrients uptake, chlorophyll and essential oil contents and composition in Anethum graveolens L Acta Agriculturae Slovenica, 2018, 111, .	0.3	2