Lucas Osco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2518474/publications.pdf

Version: 2024-02-01

430754 434063 1,137 38 18 31 citations h-index g-index papers 41 41 41 910 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements. Precision Agriculture, 2022, 23, 470-491.	3.1	8
2	Discovering Associative Patterns in Healthcare Data. Lecture Notes in Networks and Systems, 2022, , 371-379.	0.5	0
3	Counting and locating high-density objects using convolutional neural network. Expert Systems With Applications, 2022, 195, 116555.	4.4	5
4	Automatic segmentation of cattle rib-eye area in ultrasound images using the UNet++ deep neural network. Computers and Electronics in Agriculture, 2022, 195, 106818.	3.7	7
5	Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102690.	1.4	3
6	An impact analysis of pre-processing techniques in spectroscopy data to classify insect-damaged in soybean plants with machine and deep learning methods. Infrared Physics and Technology, 2022, 123, 104203.	1.3	4
7	Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. Precision Agriculture, 2021, 22, 1171-1188.	3.1	36
8	A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174, 1-17.	4.9	61
9	Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning. Forests, 2021, 12, 582.	0.9	9
10	Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors, 2021, 21, 3971.	2.1	15
11	Semantic Segmentation of Tree-Canopy in Urban Environment with Pixel-Wise Deep Learning. Remote Sensing, 2021, 13, 3054.	1.8	28
12	A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102456.	1.4	115
13	Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Computers and Electronics in Agriculture, 2021, 190, 106476.	3.7	34
14	ATSS Deep Learning-Based Approach to Detect Apple Fruits. Remote Sensing, 2021, 13, 54.	1.8	36
15	Integration of Photogrammetry and Deep Learning in Earth Observation Applications. , 2021, , .		O
16	Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network. Scientific Reports, 2021, 11, 19619.	1.6	4
17	Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102608.	1.4	5
18	Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sensing, 2021, 13, 4632.	1.8	22

#	Article	IF	CITATIONS
19	A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 97-106.	4.9	132
20	Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil. Regional Environmental Change, 2020, 20, 1.	1.4	12
21	Storm-Drain and Manhole Detection Using the RetinaNet Method. Sensors, 2020, 20, 4450.	2.1	22
22	Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery. Sensors, 2020, 20, 4802.	2.1	49
23	A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 2020, 178, 105791.	3.7	122
24	A Machine Learning Approach for Mapping Forest Vegetation in Riparian Zones in an Atlantic Biome Environment Using Sentinel-2 Imagery. Remote Sensing, 2020, 12, 4086.	1.8	19
25	Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques. Remote Sensing, 2020, 12, 3237.	1.8	68
26	Mapping Utility Poles in Aerial Orthoimages Using ATSS Deep Learning Method. Sensors, 2020, 20, 6070.	2.1	14
27	A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sensing, 2020, 12, 906.	1.8	75
28	A Novel Deep Learning Method to Identify Single Tree Species in UAV-Based Hyperspectral Images. Remote Sensing, 2020, 12, 1294.	1.8	60
29	Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology, 2020, 32, 99-108.	1.1	29
30	Climatic seasonality and water quality in watersheds: a study case in Limoeiro River watershed in the western region of São Paulo State, Brazil. Environmental Science and Pollution Research, 2020, 27, 30034-30049.	2.7	6
31	ValidaÃSão de mapa de vulnerabilidade a erosão por aprendizagem de máquina. Revista Brasileira De Geografia Fisica, 2020, 13, 564-575.	0.0	O
32	DEFINIÇÃO DE ÃREAS PRIORITÃRIAS PARA A RECUPERAÇÃO FLORESTAL EM BACIAS HIDROGRÃFICAS A PART DE ANÃŁISE MULTICRITÉRIO. Caminhos De Geografia, 2020, 21, 220-233.	TR _{0.1}	1
33	Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101907.	1.4	24
34	Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imagery. Remote Sensing, 2019, 11, 2925.	1.8	80
35	Modeling Hyperspectral Response of Water-Stress Induced Lettuce Plants Using Artificial Neural Networks. Remote Sensing, 2019, 11, 2797.	1.8	30
36	Tuberculosis space-temporal distribution from 2011 to 2016 in the municipality of Maputo, Mozambique. Poblacion Y Salud En Mesoamerica, 0, , .	0.1	1

#	Article	IF	CITATIONS
37	BRAZILIAN MIDWEST NATIVE VEGETATION MAPPING BASED ON GOOGLE EARTH ENGINE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W12-2020, 303-308.	0.2	0
38	Three-dimensional spatial modelling of traffic-induced urban air pollution using the Graz Lagrangian model and GIS. Geomatica, 0, , 1-16.	0.5	0