
Vikram Saini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2518347/publications.pdf Version: 2024-02-01

VIRDAM SAINI

#	Article	IF	CITATIONS
1	Redox homeostasis in mycobacteria: the key to tuberculosis control?. Expert Reviews in Molecular Medicine, 2011, 13, e39.	3.9	153
2	Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Reports, 2016, 14, 572-585.	6.4	124
3	A Systematic Approach for Developing Bacteria-Specific Imaging Tracers. Journal of Nuclear Medicine, 2017, 58, 144-150.	5.0	86
4	Polyphasic Taxonomic Analysis Establishes Mycobacterium indicus pranii as a Distinct Species. PLoS ONE, 2009, 4, e6263.	2.5	78
5	Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS ONE, 2018, 13, e0196016.	2.5	71
6	Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nature Communications, 2020, 11, 557.	12.8	70
7	Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line. Redox Biology, 2018, 15, 207-215.	9.0	54
8	Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2018, 9, 860.	4.8	53
9	Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics. Gut Pathogens, 2020, 12, 29.	3.4	52
10	<i>Mycobacterium tuberculosis</i> WhiB3: A Novel Iron–Sulfur Cluster Protein That Regulates Redox Homeostasis and Virulence. Antioxidants and Redox Signaling, 2012, 16, 687-697.	5.4	41
11	Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Current Opinion in Chemical Biology, 2012, 16, 45-53.	6.1	40
12	Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution. PLoS ONE, 2007, 2, e968.	2.5	39
13	Heme oxygenase-1 promotes granuloma development and protects against dissemination of mycobacteria. Laboratory Investigation, 2012, 92, 1541-1552.	3.7	38
14	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	37
15	Exploring salivary diagnostics in COVID-19: a scoping review and research suggestions. BDJ Open, 2021, 7, 8.	2.1	37
16	Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Research, 2012, 40, 10832-10850.	14.5	36
17	Activity of a Long-Acting Injectable Bedaquiline Formulation in a Paucibacillary Mouse Model of Latent Tuberculosis Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	36
18	Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathogens, 2017, 13, e1006389.	4.7	35

VIKRAM SAINI

#	Article	IF	CITATIONS
19	Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Reports, 2018, 25, 1938-1952.e5.	6.4	34
20	Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. Microchemical Journal, 2020, 155, 104705.	4.5	32
21	Environmental Heme-Based Sensor Proteins: Implications for Understanding Bacterial Pathogenesis. Antioxidants and Redox Signaling, 2012, 17, 1232-1245.	5.4	30
22	The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide - Biology and Chemistry, 2016, 59, 28-41.	2.7	29
23	Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathogens and Disease, 2018, 76, .	2.0	29
24	The Physiology and Genetics of Oxidative Stress in Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	27
25	Cinnamaldehyde regulates H ₂ O ₂ â€induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems. Journal of Cellular Physiology, 2019, 234, 6194-6208.	4.1	27
26	The use of the name Mycobacterium w for the leprosy immunotherapeutic bacillus creates confusion with M. tuberculosis-W (Beijing strain): A suggestion. Infection, Genetics and Evolution, 2008, 8, 100-101.	2.3	23
27	S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 895-906.	2.4	23
28	Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
29	Metal organic framework as "turn-on―fluorescent sensor for Zr(IV) ions and selective adsorbent for organic dyes. Microchemical Journal, 2021, 171, 106824.	4.5	22
30	Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. PLoS ONE, 2018, 13, e0197474.	2.5	15
31	Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties. Biologics: Targets and Therapy, 2017, Volume 11, 55-63.	3.2	14
32	Synthesis, characterization and utility of a series of novel copper(<scp>ii</scp>) complexes as excellent surface disinfectants against nosocomial infections. Dalton Transactions, 2021, 50, 13699-13711.	3.3	14
33	Oxalate Alters Cellular Bioenergetics, Redox Homeostasis, Antibacterial Response, and Immune Response in Macrophages. Frontiers in Immunology, 2021, 12, 694865.	4.8	13
34	Impact and prognosis of the expression of IFN- $\hat{l}\pm$ among tuberculosis patients. PLoS ONE, 2020, 15, e0235488.	2.5	12
35	Mycobacterium tuberculosis H2S Functions as a Sink to Modulate Central Metabolism, Bioenergetics, and Drug Susceptibility. Antioxidants, 2021, 10, 1285.	5.1	9
36	S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129676.	2.4	7

VIKRAM SAINI

#	Article	IF	CITATIONS
37	A Cold Chain-Independent Specimen Collection and Transport Medium Improves Diagnostic Sensitivity and Minimizes Biosafety Challenges of COVID-19 Molecular Diagnosis. Microbiology Spectrum, 2021, 9, e0110821.	3.0	6
38	Meckel–Gruber syndrome: ultrasonographic and fetal autopsy correlation. Journal of Ultrasound, 2017, 20, 167-170.	1.3	5
39	Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radical Research, 2021, 55, 655-670.	3.3	5
40	Mechanistic Insights into the Role of Hydrogen Sulfide in Mycobacterial Disease and Persistence. Free Radical Biology and Medicine, 2013, 65, S62.	2.9	0
41	Protein–Protein Interaction in the -Omics Era: Understanding Mycobacterium tuberculosis Function. , 2013, , 79-106.		0
42	Hydrogen Sulfide Alters M. Tuberculosis Bioenergetics and Promotes Tuberculosis Disease. Free Radical Biology and Medicine, 2015, 87, S141.	2.9	0
43	Oxalate Suppresses Macrophage Immunometabolism and Anti-bacterial response to Uropathogenic E.coli (UPEC) infection. Free Radical Biology and Medicine, 2020, 159, S45.	2.9	0
44	The Physiology and Genetics of Oxidative Stress in Mycobacteria. , 0, , 297-322.		0
45	Impact and prognosis of the expression of IFN- $\hat{1}\pm$ among tuberculosis patients. , 2020, 15, e0235488.		0
46	Impact and prognosis of the expression of IFN- $\hat{l}\pm$ among tuberculosis patients. , 2020, 15, e0235488.		0
47	Impact and prognosis of the expression of IFN-α among tuberculosis patients. , 2020, 15, e0235488.		0
48	Impact and prognosis of the expression of IFN- $\hat{1}\pm$ among tuberculosis patients. , 2020, 15, e0235488.		0