Jens Soltwisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2518293/publications.pdf

Version: 2024-02-01

		257450	254184
52	1,977	24	43
papers	citations	h-index	g-index
55	55	55	1578
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mass spectrometry imaging with laser-induced postionization. Science, 2015, 348, 211-215.	12.6	268
2	Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nature Methods, 2019, 16, 925-931.	19.0	239
3	An Onâ€Tissue Paternò–Býchi Reaction for Localization of Carbon–Carbon Double Bonds in Phospholipids and Glycolipids by Matrixâ€Assisted Laserâ€Desorption–lonization Massâ€Spectrometry Imaging. Angewandte Chemie - International Edition, 2018, 57, 12092-12096.	13.8	133
4	MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument for Rapid Mass Spectrometry Imaging and Ion Mobility Separation of Complex Lipid Profiles. Analytical Chemistry, 2020, 92, 8697-8703.	6. 5	84
5	Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chemical Communications, 2017, 53, 7246-7249.	4.1	79
6	Ion Yields in UV-MALDI Mass Spectrometry As a Function of Excitation Laser Wavelength and Optical and Physico-Chemical Properties of Classical and Halogen-Substituted MALDI Matrixes. Analytical Chemistry, 2012, 84, 6567-6576.	6.5	75
7	MALDI Mass Spectrometry Imaging of Bioactive Lipids in Mouse Brain with a Synapt G2-S Mass Spectrometer Operated at Elevated Pressure: Improving the Analytical Sensitivity and the Lateral Resolution to Ten Micrometers. Analytical Chemistry, 2014, 86, 7798-7805.	6.5	71
8	MALDI-2 for the Enhanced Analysis of <i>N</i> -Linked Glycans by Mass Spectrometry Imaging. Analytical Chemistry, 2020, 92, 13904-13911.	6. 5	56
9	Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of <i>Drosophila melanogaster</i> . Analytical Chemistry, 2016, 88, 5258-5263.	6.5	51
10	Infrared Matrix-Assisted Laser Desorption/Ionization Orthogonal-Time-of-Flight Mass Spectrometry Employing a Cooling Stage and Water Ice As a Matrix. Analytical Chemistry, 2012, 84, 5669-5676.	6. 5	43
11	Charge Distribution between Different Classes of Glycerophospolipids in MALDI-MS Imaging. Analytical Chemistry, 2020, 92, 5222-5230.	6. 5	40
12	Effect of Gas Pressure and Gas Type on the Fragmentation of Peptide and Oligosaccharide Ions Generated in an Elevated Pressure UV/IR-MALDI Ion Source Coupled to an Orthogonal Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2009, 81, 2921-2934.	6. 5	39
13	On-Tissue Phospholipase C Digestion for Enhanced MALDI-MS Imaging of Neutral Glycosphingolipids. Analytical Chemistry, 2016, 88, 5595-5599.	6.5	38
14	Ozonization of Tissue Sections for MALDI MS Imaging of Carbon–Carbon Double Bond Positional Isomers of Phospholipids. Analytical Chemistry, 2020, 92, 6245-6250.	6.5	37
15	Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode. Journal of the American Society for Mass Spectrometry, 2016, 27, 1952-1964.	2.8	36
16	Structural Profiling of Individual Glycosphingolipids in a Single Thin-Layer Chromatogram by Multiple Sequential Immunodetection Matched with Direct IR-MALDI-o-TOF Mass Spectrometry. Analytical Chemistry, 2009, 81, 9481-9492.	6.5	33
17	Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 6925-6932.	3.7	33
18	MALDI Mass Spectrometry Imaging in Microscope Mode with Infrared Lasers: Bypassing the Diffraction Limits. Analytical Chemistry, 2014, 86, 321-325.	6. 5	32

#	Article	IF	CITATIONS
19	Direct Laser Desorption Ionization of Endogenous and Exogenous Compounds from Insect Cuticles: Practical and Methodologic Aspects. Journal of the American Society for Mass Spectrometry, 2011, 22, 1273-84.	2.8	31
20	New insights into mechanisms of material ejection in MALDI mass spectrometry for a wide range of spot sizes. Scientific Reports, 2018, 8, 7755.	3.3	31
21	MALDI-2 Mass Spectrometry and Immunohistochemistry Imaging of Gb3Cer, Gb4Cer, and Further Glycosphingolipids in Human Colorectal Cancer Tissue. Analytical Chemistry, 2020, 92, 7096-7105.	6.5	31
22	Color Mattersâ€"Material Ejection and Ion Yields in UV-MALDI Mass Spectrometry as a Function of Laser Wavelength and Laser Fluence. Journal of the American Society for Mass Spectrometry, 2013, 24, 1477-1488.	2.8	30
23	Transmission-Mode MALDI Mass Spectrometry Imaging of Single Cells: Optimizing Sample Preparation Protocols. Analytical Chemistry, 2021, 93, 4513-4520.	6.5	29
24	New Insights into the Wavelength Dependence of MALDI Mass Spectrometry. Analytical Chemistry, 2017, 89, 7734-7741.	6.5	28
25	Advanced Methods for MALDI-MS Imaging of the Chemical Communication in Microbial Communities. Analytical Chemistry, 2019, 91, 15081-15089.	6.5	27
26	Discrimination of Isobaric Leucine and Isoleucine Residues and Analysis of Post-Translational Modifications in Peptides by MALDI In-Source Decay Mass Spectrometry Combined with Collisional Cooling. Analytical Chemistry, 2010, 82, 5628-5635.	6.5	25
27	A binary matrix of 2,5â€dihydroxybenzoic acid and glycerol produces homogenous sample preparations for matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 59-66.	1.5	24
28	Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Analytical and Bioanalytical Chemistry, 2020, 412, 6875-6886.	3.7	24
29	Mass spectrometry imaging to explore molecular heterogeneity in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24
30	Normal silica gel and reversed phase thin-layer chromatography coupled with UV spectroscopy and IR-MALDI-o-TOF-MS for the detection of tetracycline antibiotics. Analytical and Bioanalytical Chemistry, 2010, 398, 2821-2831.	3.7	22
31	Molecular insights into symbiosisâ€"mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation. Analytical and Bioanalytical Chemistry, 2021, 413, 2767-2777.	3.7	22
32	Enhanced Detection of Highâ€Mass Proteins by Using an Active Pixel Detector. Angewandte Chemie - International Edition, 2013, 52, 11261-11264.	13.8	21
33	An Onâ€Tissue Paternò–Býchi Reaction for Localization of Carbon–Carbon Double Bonds in Phospholipids and Clycolipids by Matrixâ€Assisted Laserâ€Desorption–lonization Mass‣pectrometry Imaging. Angewandte Chemie, 2018, 130, 12268-12272.	2.0	21
34	Detailed Characterization of the Postionization Efficiencies in MALDI-2 as a Function of Relevant Input Parameters. Journal of the American Society for Mass Spectrometry, 2020, 31, 1844-1853.	2.8	21
35	Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Analytical Chemistry, 2014, 86, 1215-1222.	6.5	20
36	Enterohaemorrhagic <i>Escherichia coli</i> haemolysin is cleaved and inactivated by serine protease EspPî±. Environmental Microbiology, 2011, 13, 1327-1341.	3.8	19

#	Article	IF	CITATIONS
37	Analysis of Noncovalent Chitinase-Chito-Oligosaccharide Complexes by Infrared-Matrix Assisted Laser Desorption Ionization and Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2011, 83, 4030-4036.	6.5	16
38	Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Analytical Chemistry, 2022, 94, 4889-4900.	6.5	16
39	Generation of multiply charged peptides and proteins from glycerol-based matrices using lasers with ultraviolet, visible and near-infrared wavelengths and an atmospheric pressure ion source. International Journal of Mass Spectrometry, 2017, 416, 61-70.	1.5	14
40	Infrared MALDI Mass Spectrometry with Laser-Induced Postionization for Imaging of Bacterial Colonies. Journal of the American Society for Mass Spectrometry, 2021, 32, 1053-1064.	2.8	13
41	Singleâ∈Photonâ∈Induced Postâ∈Ionization to Boost Ion Yields in MALDI Mass Spectrometry Imaging**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
42	MALDI-2 and t-MALDI-2 Mass Spectrometry Imaging. Methods in Molecular Biology, 2022, 2437, 21-40.	0.9	10
43	An ultraviolet/infrared matrixâ€assisted laser desorption ionization sample stage integrating scanning knifeâ€edge and slit devices for laser beam analysis. Rapid Communications in Mass Spectrometry, 2011, 25, 1266-1270.	1.5	9
44	Time-Resolved Imaging of the MALDI Linear-TOF Ion Cloud: Direct Visualization and Exploitation of Ion Optical Phenomena Using a Position- and Time-Sensitive Detector. Journal of the American Society for Mass Spectrometry, 2014, 25, 809-819.	2.8	9
45	Infrared MALDI mass spectrometry imaging of TLC-separated glycosphingolipids with emphasis on Shiga toxin receptors isolated from human colon epithelial cells. International Journal of Mass Spectrometry, 2017, 416, 53-60.	1.5	8
46	Ultraviolet laser desorption/ionization mass spectrometry of single-core and multi-core polyaromatic hydrocarbons under variable conditions of collisional cooling: insights into the generation of molecular ions, fragments and oligomers. Journal of Mass Spectrometry, 2014, 49, 1127-1138.	1.6	7
47	Singleâ€Photonâ€Induced Postâ€Ionization to Boost Ion Yields in MALDI Mass Spectrometry Imaging**. Angewandte Chemie, 2022, 134, .	2.0	5
48	Lowâ€Pressure Photoionization in a Dualâ€lon Funnel Injector Coupled to an Orbitrap Mass Spectrometer for Direct Analysis of Human Breath and Headâ€Space Sampled Coffee Roasts. ChemPlusChem, 2020, 85, 1559-1563.	2.8	4
49	Spatial distribution of isobaric androgens in target tissues using chemical derivatization and MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument. RSC Advances, 2021, 11, 33916-33925.	3.6	3
50	Effect of the Laser Pulse Width in MALDI-2: A Comparative Study of Picosecond versus Nanosecond Wide Pulses for Laser Postionization. Journal of the American Society for Mass Spectrometry, 2022, 33, 315-321.	2.8	3
51	Interactive Visual Analysis of Mass Spectrometry Imaging Data Using Linear and Non-Linear Embeddings. Information (Switzerland), 2020, 11, 575.	2.9	1
52	Trendbericht: Analytische Chemie 2016/2017. Nachrichten Aus Der Chemie, 2018, 66, 389-399.	0.0	0