
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/251712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The curse of the uncultured fungus. MycoKeys, 2022, 86, 177-194.	0.8	9
2	<scp>DNA</scp> barcoding of fungal specimens using <scp>PacBio</scp> longâ€read highâ€throughput sequencing. Molecular Ecology Resources, 2022, 22, 2871-2879.	2.2	12
3	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	4.7	42
4	Fungal functional ecology: bringing a traitâ€based approach to plantâ€associated fungi. Biological Reviews, 2020, 95, 409-433.	4.7	171
5	Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Frontiers in Microbiology, 2020, 11, 1953.	1.5	126
6	Identifying the â€~unidentified' fungi: a global-scale long-read third-generation sequencing approach. Fungal Diversity, 2020, 103, 273-293.	4.7	48
7	The Taxon Hypothesis Paradigm—On the Unambiguous Detection and Communication of Taxa. Microorganisms, 2020, 8, 1910.	1.6	114
8	Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME Journal, 2020, 14, 2336-2346.	4.4	19
9	FungalRoot: global online database of plant mycorrhizal associations. New Phytologist, 2020, 227, 955-966.	3.5	221
10	Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytologist, 2020, 227, 1289-1293.	3.5	17
11	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	4.7	387
12	The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47, D259-D264.	6.5	2,072
13	High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity, 2018, 90, 135-159.	4.7	450
14	Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action. Advances in Ecological Research, 2018, 58, 63-99.	1.4	120
15	<scp>Protax</scp> â€fungi: a webâ€based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytologist, 2018, 220, 517-525.	3.5	69
16	Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys, 2018, 28, 65-82.	0.8	33
17	ToxGen: an improved reference database for the identification of type B-trichothecene genotypes inFusarium. PeerJ, 2017, 5, e2992.	0.9	18
18	Molecular Techniques in Mycological Studies and Sequence Data Curating: Quality Control and Challenges. Fungal Biology, 2016, , 47-64.	0.3	2

#	Article	IF	CITATIONS
19	Determining threshold values for barcoding fungi: lessons fromCortinarius(Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiology Ecology, 2016, 92, fiw045.	1.3	94
20	Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME Journal, 2016, 10, 885-896.	4.4	256
21	Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal, 2016, 10, 346-362.	4.4	307
22	Sequence-based classification and identification of Fungi. Mycologia, 2016, 108, 1049-1068.	0.8	154
23	A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts. Microbes and Environments, 2015, 30, 145-150.	0.7	231
24	Standardizing metadata and taxonomic identification in metabarcoding studies. GigaScience, 2015, 4, 34.	3.3	35
25	Response to Comment on "Global diversity and geography of soil fungi― Science, 2015, 349, 936-936.	6.0	43
26	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	6.0	2,513
27	Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME Journal, 2014, 8, 226-244.	4.4	293
28	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	4.7	123
29	Global biogeography of the ectomycorrhizal /sebacina lineage (<scp>F</scp> ungi,) Tj ETQq1 1 0.784314 rgBT /O 2014, 23, 4168-4183.	verlock 10 2.0) Tf 50 347 T 58
30	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	1.4	272
31	Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal <scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4, 914-919.	2.2	868
32	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	2.0	2,997
33	<scp>ITS</scp> 1 versus <scp>ITS</scp> 2 as <scp>DNA</scp> metabarcodes for fungi. Molecular Ecology Resources, 2013, 13, 218-224.	2.2	340
34	Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology, 2013, 6, 256-268.	0.7	81
35	Fungal community analysis by highâ€ŧhroughput sequencing of amplified markers – a user's guide. New Phytologist, 2013, 199, 288-299.	3.5	747
36	Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Research in Microbiology, 2012, 163, 407-412.	1.0	12

#	Article	IF	CITATIONS
37	Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi. PLoS ONE, 2011, 6, e24940.	1.1	51
38	Towards standardization of the description and publication of nextâ€generation sequencing datasets of fungal communities. New Phytologist, 2011, 191, 314-318.	3.5	85
39	V-REVCOMP: automated high-throughput detection of reverse complementary 16S rRNA gene sequences in large environmental and taxonomic datasets. FEMS Microbiology Letters, 2011, 319, 140-145.	0.7	12
40	Rethinking taxon sampling in the light of environmental sequencing. Cladistics, 2011, 27, 197-203.	1.5	23
41	A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation. Mycoscience, 2011, 52, 278-282.	0.3	7
42	Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van Leeuwenhoek, 2011, 100, 471-475.	0.7	88
43	The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 2010, 186, 281-285.	3.5	1,563
44	454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 2010, 188, 291-301.	3.5	484
45	PlutoF—a Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences. Evolutionary Bioinformatics, 2010, 6, EBO.S6271.	0.6	203
46	Mycorrhizal symbionts of <i>Pisonia grandis</i> and <i>P. sechellarum</i> in Seychelles: identification of mycorrhizal fungi and description of new <i>Tomentella</i> species. Mycologia, 2010, 102, 522-533.	0.8	38
47	An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecology, 2010, 3, 284-287.	0.7	194
48	V-Xtractor: An open-source, high-throughput software tool to identify and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA gene sequences. Journal of Microbiological Methods, 2010, 83, 250-253.	0.7	118
49	An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 2010, 10, 1076-1081.	2.2	77
50	The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 2009, 296, 97-101.	0.7	246
51	Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxonâ€specific primers. New Phytologist, 2008, 180, 479-490.	3.5	362
52	Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective. PLoS ONE, 2006, 1, e59.	1.1	508
53	UNITE: a database providing webâ€based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist, 2005, 166, 1063-1068.	3.5	912
54	Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 0, 4, 37-63.	0.8	157

#	Article	IF	CITATIONS
55	Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 0, 10, 1-43.	0.8	409
56	Third-party Annotations: Linking PlutoF platform and the ELIXIR Contextual Data ClearingHouse for the reporting of source material annotation gaps and inaccuracies. Biodiversity Information Science and Standards, 0, 5, .	0.0	1
57	Top 50 most wanted fungi. MycoKeys, 0, 12, 29-40.	0.8	72
58	Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota). MycoKeys, 0, 13, 21-33.	0.8	8
59	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	0.8	16
60	Read quality-based trimming of the distal ends of public fungal DNA sequences is nowhere near satisfactory. MycoKeys, 0, 26, 13-24.	0.8	10
61	A price tag on species. Research Ideas and Outcomes, 0, 8, .	1.0	1