## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2517058/publications.pdf Version: 2024-02-01



ANA R SANZ

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proceedings of the United States of America, 2013, 110, 12024-12029.                                                                                                                                       | 3.3 | 485       |
| 2  | NF-κB in Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2010, 21, 1254-1262.                                                                                                                                                                                         | 3.0 | 483       |
| 3  | Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid–Induced AKI. Journal of the<br>American Society of Nephrology: JASN, 2017, 28, 218-229.                                                                                                                               | 3.0 | 356       |
| 4  | The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB. Journal of the American Society of Nephrology: JASN, 2011, 22, 1315-1325.                                                                                                                               | 3.0 | 340       |
| 5  | Tenofovir Nephrotoxicity: 2011 Update. AIDS Research and Treatment, 2011, 2011, 1-11.                                                                                                                                                                                                          | 0.3 | 210       |
| 6  | Mechanisms of Renal Apoptosis in Health and Disease. Journal of the American Society of Nephrology:<br>JASN, 2008, 19, 1634-1642.                                                                                                                                                              | 3.0 | 208       |
| 7  | The Cytokine TWEAK Modulates Renal Tubulointerstitial Inflammation. Journal of the American Society of Nephrology: JASN, 2008, 19, 695-703.                                                                                                                                                    | 3.0 | 169       |
| 8  | Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrology Dialysis Transplantation, 2011, 26, 1797-1802.                                                                                                                                  | 0.4 | 169       |
| 9  | Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 301-312. | 5.5 | 166       |
| 10 | Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosisâ€mediated cell death. FASEB Journal, 2019, 33, 8961-8975.                                                                                                                                               | 0.2 | 161       |
| 11 | Unilateral ureteral obstruction: beyond obstruction. International Urology and Nephrology, 2014, 46, 765-776.                                                                                                                                                                                  | 0.6 | 157       |
| 12 | The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast.<br>Journal of Fungi (Basel, Switzerland), 2018, 4, 1.                                                                                                                                       | 1.5 | 143       |
| 13 | Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy.<br>International Journal of Molecular Sciences, 2020, 21, 3798.                                                                                                                                 | 1.8 | 142       |
| 14 | Cytokine cooperation in renal tubular cell injury: The role of TWEAK. Kidney International, 2006, 70,<br>1750-1758.                                                                                                                                                                            | 2.6 | 139       |
| 15 | 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget, 2017, 8, 18456-18485.                                                                                                           | 0.8 | 134       |
| 16 | Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opinion on Investigational<br>Drugs, 2018, 27, 917-930.                                                                                                                                                                 | 1.9 | 133       |
| 17 | The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules, 2020, 10, 347.                                                                                                                                                                                               | 1.8 | 118       |
| 18 | TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4182-4187                                                                                                                          | 3.3 | 112       |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | TWEAK, a multifunctional cytokine in kidney injury. Kidney International, 2011, 80, 708-718.                                                                                                                                         | 2.6 | 105       |
| 20 | Lyso-Gb3 activates Notch1 in human podocytes. Human Molecular Genetics, 2015, 24, 5720-5732.                                                                                                                                         | 1.4 | 105       |
| 21 | The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney International, 2016, 89, 399-410.                                                                              | 2.6 | 103       |
| 22 | Tumor Necrosis Factor–Like Weak Inducer of Apoptosis (TWEAK) Enhances Vascular and Renal Damage<br>Induced by Hyperlipidemic Diet in ApoE-Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular<br>Biology, 2009, 29, 2061-2068. | 1.1 | 101       |
| 23 | Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression. Toxins, 2018, 10, 300.                                                                                                                                | 1.5 | 101       |
| 24 | Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental<br>diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2109-H2119.                               | 1.5 | 95        |
| 25 | The MIF Receptor CD74 in Diabetic Podocyte Injury. Journal of the American Society of Nephrology:<br>JASN, 2009, 20, 353-362.                                                                                                        | 3.0 | 94        |
| 26 | TWEAK and the progression of renal disease: clinical translation. Nephrology Dialysis<br>Transplantation, 2014, 29, i54-i62.                                                                                                         | 0.4 | 94        |
| 27 | Histone lysine-crotonylation in acute kidney injury. DMM Disease Models and Mechanisms, 2016, 9, 633-45.                                                                                                                             | 1.2 | 94        |
| 28 | Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. Journal of Cellular and Molecular Medicine, 2009, 13, 3329-3342.                                                        | 1.6 | 90        |
| 29 | â€~Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'. Cellular Microbiology, 2016, 18, 1239-1250.                                                                   | 1.1 | 90        |
| 30 | 3,4-Dideoxyglucosone-3-ene Induces Apoptosis in Renal Tubular Epithelial Cells. Diabetes, 2005, 54,<br>2424-2429.                                                                                                                    | 0.3 | 88        |
| 31 | Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrology Dialysis<br>Transplantation, 2012, 27, iv6-iv10.                                                                                                     | 0.4 | 87        |
| 32 | TWEAK Activates the Non-Canonical NFκB Pathway in Murine Renal Tubular Cells: Modulation of CCL21.<br>PLoS ONE, 2010, 5, e8955.                                                                                                      | 1.1 | 87        |
| 33 | Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrology Dialysis<br>Transplantation, 2018, 33, 1875-1886.                                                                                             | 0.4 | 83        |
| 34 | BASP1 Promotes Apoptosis in Diabetic Nephropathy. Journal of the American Society of Nephrology:<br>JASN, 2010, 21, 610-621.                                                                                                         | 3.0 | 81        |
| 35 | Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney<br>Disease. Nutrients, 2017, 9, 489.                                                                                                    | 1.7 | 80        |
| 36 | Albumin downregulates Klotho in tubular cells. Nephrology Dialysis Transplantation, 2018, 33,<br>1712-1722.                                                                                                                          | 0.4 | 79        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | p-Cresyl sulphate has pro-inflammatory and cytotoxic actions on human proximal tubular epithelial<br>cells. Nephrology Dialysis Transplantation, 2014, 29, 56-64.                                | 0.4 | 77        |
| 38 | TNF Superfamily: A Growing Saga of Kidney Injury Modulators. Mediators of Inflammation, 2010, 2010, 1-11.                                                                                        | 1.4 | 74        |
| 39 | PGCâ€1α deficiency causes spontaneous kidney inflammation and increases the severity of nephrotoxic<br>AKI. Journal of Pathology, 2019, 249, 65-78.                                              | 2.1 | 70        |
| 40 | Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opinion on<br>Investigational Drugs, 2016, 25, 1045-1058.                                                       | 1.9 | 68        |
| 41 | Translational value of animal models of kidney failure. European Journal of Pharmacology, 2015, 759, 205-220.                                                                                    | 1.7 | 67        |
| 42 | TWEAK (tumor necrosis factor–like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney International, 2012, 81, 1098-1107.                | 2.6 | 61        |
| 43 | DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene<br>in human CD8 <sup>+</sup> T and NK cells. Epigenetics, 2013, 8, 66-78.                    | 1.3 | 60        |
| 44 | <scp>MXRA</scp> 5 is a <scp>TGF</scp> â€î²1â€regulated human protein with antiâ€inflammatory and<br>antiâ€fibrotic properties. Journal of Cellular and Molecular Medicine, 2017, 21, 154-164.    | 1.6 | 60        |
| 45 | Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son―<br>Toxins, 2017, 9, 114.                                                                       | 1.5 | 58        |
| 46 | Considering TWEAK as a target for therapy in renal and vascular injury. Cytokine and Growth Factor Reviews, 2009, 20, 251-258.                                                                   | 3.2 | 57        |
| 47 | Inhibition of Bromodomain and Extraterminal Domain Family Proteins Ameliorates Experimental Renal<br>Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 504-519.             | 3.0 | 56        |
| 48 | Functional and genomic analyses of blocked protein Oâ€nannosylation in baker's yeast. Molecular<br>Microbiology, 2011, 79, 1529-1546.                                                            | 1.2 | 55        |
| 49 | HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin<br>II. Laboratory Investigation, 2012, 92, 32-45.                                            | 1.7 | 55        |
| 50 | MIF, CD74 and other partners in kidney disease: Tales of a promiscuous couple. Cytokine and Growth<br>Factor Reviews, 2013, 24, 23-40.                                                           | 3.2 | 52        |
| 51 | Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. American Journal of Physiology - Renal Physiology, 2016, 311, F1329-F1340. | 1.3 | 52        |
| 52 | Fn14 in podocytes and proteinuric kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of<br>Disease, 2013, 1832, 2232-2243.                                                          | 1.8 | 50        |
| 53 | Horizon 2020 in Diabetic Kidney Disease: The Clinical Trial Pipeline for Add-On Therapies on Top of<br>Renin Angiotensin System Blockade. Journal of Clinical Medicine, 2015, 4, 1325-1347.      | 1.0 | 50        |
| 54 | Phenytoin inhibits necroptosis. Cell Death and Disease, 2018, 9, 359.                                                                                                                            | 2.7 | 50        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | <scp>TWEAK</scp> transactivation of the epidermal growth factor receptor mediates renal inflammation. Journal of Pathology, 2013, 231, 480-494.                                                      | 2.1 | 48        |
| 56 | Targeting local vascular and systemic consequences of inflammation on vascular and cardiac valve calcification. Expert Opinion on Therapeutic Targets, 2016, 20, 89-105.                             | 1.5 | 47        |
| 57 | TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Frontiers in Immunology, 2013, 4,<br>447.                                                                                        | 2.2 | 46        |
| 58 | Ferroptosis and kidney disease. Nefrologia, 2020, 40, 384-394.                                                                                                                                       | 0.2 | 45        |
| 59 | RICORS2040: the need for collaborative research in chronic kidney disease. CKJ: Clinical Kidney Journal, 2022, 15, 372-387.                                                                          | 1.4 | 45        |
| 60 | Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Experimental and Molecular Medicine, 2017, 49, e352-e352. | 3.2 | 42        |
| 61 | Renin-angiotensin system and inflammation update. Molecular and Cellular Endocrinology, 2021, 529, 111254.                                                                                           | 1.6 | 42        |
| 62 | Kidney Injury Marker 1 and Neutrophil Gelatinase-Associated Lipocalin in Chronic Kidney Disease.<br>Nephron, 2017, 136, 263-267.                                                                     | 0.9 | 41        |
| 63 | Role of Macrophages and Related Cytokines in Kidney Disease. Frontiers in Medicine, 2021, 8, 688060.                                                                                                 | 1.2 | 40        |
| 64 | Role of Bcl-xL in paracetamol-induced tubular epithelial cell death. Kidney International, 2005, 67,<br>592-601.                                                                                     | 2.6 | 39        |
| 65 | Mitogen-Activated Protein Kinase 14 Promotes AKI. Journal of the American Society of Nephrology:<br>JASN, 2017, 28, 823-836.                                                                         | 3.0 | 38        |
| 66 | Out of the TWEAKlight: Elucidating the Role of Fn14 and TWEAK in Acute Kidney Injury. Seminars in<br>Nephrology, 2016, 36, 189-198.                                                                  | 0.6 | 37        |
| 67 | Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 4113.                                                       | 1.8 | 37        |
| 68 | TWEAK favors phosphate-induced calcification of vascular smooth muscle cells through canonical and non-canonical activation of NFI®B. Cell Death and Disease, 2016, 7, e2305-e2305.                  | 2.7 | 36        |
| 69 | Molecular pathways driving omeprazole nephrotoxicity. Redox Biology, 2020, 32, 101464.                                                                                                               | 3.9 | 36        |
| 70 | Klotho to Treat Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 687-689.                                                                                             | 3.0 | 35        |
| 71 | Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Research, 2016, 44, gkw324.                       | 6.5 | 35        |
| 72 | Targeting of regulated necrosis in kidney disease. Nefrologia, 2018, 38, 125-135.                                                                                                                    | 0.2 | 35        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Albumin-induced apoptosis of tubular cells is modulated by BASP1. Cell Death and Disease, 2015, 6, e1644-e1644.                                                                                     | 2.7 | 34        |
| 74 | Atrasentan for the treatment of diabetic nephropathy. Expert Opinion on Investigational Drugs, 2017, 26, 741-750.                                                                                   | 1.9 | 34        |
| 75 | Rlm1 mediates a positive autoregulatory transcriptional feedback essential for Slt2 MAPK dependent gene expression. Journal of Cell Science, 2016, 129, 1649-60.                                    | 1.2 | 33        |
| 76 | Signal Integration and Transcriptional Regulation of the Inflammatory Response Mediated by the GM-/M-CSF Signaling Axis in Human Monocytes. Cell Reports, 2019, 29, 860-872.e5.                     | 2.9 | 29        |
| 77 | Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular Sciences, 2022, 23, 1542.                                                                                      | 1.8 | 29        |
| 78 | Progress in the development of animal models of acute kidney injury and its impact on drug discovery.<br>Expert Opinion on Drug Discovery, 2013, 8, 879-895.                                        | 2.5 | 28        |
| 79 | Non-canonical NFκB activation promotes chemokine expression in podocytes. Scientific Reports, 2016, 6, 28857.                                                                                       | 1.6 | 28        |
| 80 | Lesinurad: what the nephrologist should know. CKJ: Clinical Kidney Journal, 2017, 10, 679-687.                                                                                                      | 1.4 | 28        |
| 81 | NIK as a Druggable Mediator of Tissue Injury. Trends in Molecular Medicine, 2019, 25, 341-360.                                                                                                      | 3.5 | 28        |
| 82 | Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Scientific Reports, 2017, 7, 41510.                                                           | 1.6 | 27        |
| 83 | Dietary Care for ADPKD Patients: Current Status and Future Directions. Nutrients, 2019, 11, 1576.                                                                                                   | 1.7 | 27        |
| 84 | Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease.<br>Antioxidants, 2022, 11, 1356.                                                                    | 2.2 | 27        |
| 85 | Designing drugs that combat kidney damage. Expert Opinion on Drug Discovery, 2015, 10, 541-556.                                                                                                     | 2.5 | 26        |
| 86 | NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in<br>tubular cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 635-646. | 1.8 | 26        |
| 87 | Loss of NLRP6 expression increases the severity of acute kidney injury. Nephrology Dialysis<br>Transplantation, 2020, 35, 587-598.                                                                  | 0.4 | 26        |
| 88 | Modulation of Renal Tubular Cell Survival: Where is the Evidence?. Current Medicinal Chemistry, 2006, 13, 449-454.                                                                                  | 1.2 | 24        |
| 89 | CD74 in Kidney Disease. Frontiers in Immunology, 2015, 6, 483.                                                                                                                                      | 2.2 | 24        |
| 90 | Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS Journal, 2015, 282, 715-731.                                                                                      | 2.2 | 24        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped<br>Polyglutamate-Curcuminoid Conjugate. Scientific Reports, 2020, 10, 2056.                                                                            | 1.6 | 24        |
| 92  | The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health.<br>Frontiers in Pharmacology, 2020, 11, 393.                                                                                     | 1.6 | 24        |
| 93  | Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death and Disease, 2018, 9, 118.                                                             | 2.7 | 23        |
| 94  | Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney International, 2022, 101, 1200-1215.                                                                             | 2.6 | 23        |
| 95  | Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. CKJ: Clinical Kidney Journal, 2017, 10, 188-191.                                                                       | 1.4 | 22        |
| 96  | Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert<br>Review of Proteomics, 2019, 16, 77-92.                                                                                        | 1.3 | 22        |
| 97  | A Slit in Podocyte Death. Current Medicinal Chemistry, 2008, 15, 1645-1654.                                                                                                                                                      | 1.2 | 21        |
| 98  | 3,4-DGE is cytotoxic and decreases HSP27/HSPB1 in podocytes. Archives of Toxicology, 2013, 88, 597-608.                                                                                                                          | 1.9 | 21        |
| 99  | <scp>PCSK</scp> 9 in diabetic kidney disease. European Journal of Clinical Investigation, 2016, 46, 779-786.                                                                                                                     | 1.7 | 21        |
| 100 | TWEAK Promotes Peritoneal Inflammation. PLoS ONE, 2014, 9, e90399.                                                                                                                                                               | 1.1 | 21        |
| 101 | Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes.<br>Frontiers in Pharmacology, 2021, 12, 662020.                                                                                 | 1.6 | 20        |
| 102 | 3,4-DGE is Important for Side Effects in Peritoneal Dialysis What About its Role in Diabetes. Current<br>Medicinal Chemistry, 2006, 13, 2695-2702.                                                                               | 1.2 | 19        |
| 103 | Chronicity following ischaemia-reperfusion injury depends on tubular-macrophage crosstalk<br>involving two tubular cell-derived CSF-1R activators: CSF-1 and IL-34. Nephrology Dialysis<br>Transplantation, 2016, 31, 1409-1416. | 0.4 | 19        |
| 104 | Circulating CXCL16 in Diabetic Kidney Disease. Kidney and Blood Pressure Research, 2016, 41, 663-671.                                                                                                                            | 0.9 | 19        |
| 105 | Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. Journal of Nephrology, 2021, 34, 1819-1832.                                            | 0.9 | 19        |
| 106 | Inflammatory Cytokines and Survival Factors from Serum Modulate Tweak-Induced Apoptosis in PC-3<br>Prostate Cancer Cells. PLoS ONE, 2012, 7, e47440.                                                                             | 1.1 | 18        |
| 107 | Parathyroid hormone–related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2. Kidney International, 2013, 83, 825-834.                                                      | 2.6 | 18        |
| 108 | Chronodisruption: A Poorly Recognized Feature of CKD. Toxins, 2020, 12, 151.                                                                                                                                                     | 1.5 | 18        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | TWEAK Signaling Pathway Blockade Slows Cyst Growth and Disease Progression in Autosomal<br>Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32,<br>1913-1932.             | 3.0 | 18        |
| 110 | Bone Marrow–Derived RIPK3 Mediates Kidney Inflammation in Acute Kidney Injury. Journal of the<br>American Society of Nephrology: JASN, 2022, 33, 357-373.                                                               | 3.0 | 18        |
| 111 | MAP3K kinases and kidney injury. Nefrologia, 2019, 39, 568-580.                                                                                                                                                         | 0.2 | 17        |
| 112 | Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione. Oncotarget, 2016, 7, 76496-76507.                                                                                                    | 0.8 | 16        |
| 113 | Targeting of regulated necrosis in kidney disease. Nefrologia, 2018, 38, 125-135.                                                                                                                                       | 0.2 | 16        |
| 114 | Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent<br>genes upon cell wall stress. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861,<br>1029-1039. | 0.9 | 16        |
| 115 | MACE genes in the kidney: identification of MACED2 as upregulated during kidney injury and in stressed tubular cells. Nephrology Dialysis Transplantation, 2019, 34, 1498-1507.                                         | 0.4 | 16        |
| 116 | Translational science in chronic kidney disease. Clinical Science, 2017, 131, 1617-1629.                                                                                                                                | 1.8 | 15        |
| 117 | Macrophages and Recently Identified Forms of Cell Death. International Reviews of Immunology, 2014, 33, 9-22.                                                                                                           | 1.5 | 14        |
| 118 | Gender, Albuminuria and Chronic Kidney Disease Progression in Treated Diabetic Kidney Disease.<br>Journal of Clinical Medicine, 2020, 9, 1611.                                                                          | 1.0 | 14        |
| 119 | Molecular evidence of field cancerization initiated by diabetes in colon cancer patients. Molecular<br>Oncology, 2019, 13, 857-872.                                                                                     | 2.1 | 13        |
| 120 | Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opinion on Drug Discovery, 2020, 15, 101-115.                                                             | 2.5 | 13        |
| 121 | Ferroptosis and kidney disease. Nefrologia, 2020, 40, 384-394.                                                                                                                                                          | 0.2 | 13        |
| 122 | Acute kidney injury transcriptomics unveils a relationship between inflammation and ageing.<br>Nefrologia, 2012, 32, 715-23.                                                                                            | 0.2 | 13        |
| 123 | Ferrostatinâ€∎ modulates dysregulated kidney lipids in acute kidney injury. Journal of Pathology, 2022, 257, 285-299.                                                                                                   | 2.1 | 13        |
| 124 | Nicotinamide and acute kidney injury. CKJ: Clinical Kidney Journal, 2021, 14, 2453-2462.                                                                                                                                | 1.4 | 12        |
| 125 | TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells.<br>PLoS ONE, 2018, 13, e0199391.                                                                                        | 1.1 | 11        |
| 126 | TWEAKing renal injury. Frontiers in Bioscience - Landmark, 2008, 13, 580.                                                                                                                                               | 3.0 | 11        |

0

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Lethal activity of FADD death domain in renal tubular epithelial cells. Kidney International, 2006, 69, 2205-2211.                                                                                                   | 2.6 | 9         |
| 128 | The meaning of urinary creatinine concentration. Kidney International, 2011, 79, 791.                                                                                                                                | 2.6 | 9         |
| 129 | Diabetesâ€mediated promotion of colon mucosa carcinogenesis is associated with mitochondrial dysfunction. Molecular Oncology, 2019, 13, 1887-1897.                                                                   | 2.1 | 9         |
| 130 | Urinary Cyclophilin A as Marker of Tubular Cell Death and Kidney Injury. Biomedicines, 2021, 9, 217.                                                                                                                 | 1.4 | 9         |
| 131 | Correction of hypocalcemia allows optimal recruitment of FGF-23-dependent phosphaturic<br>mechanisms in acute hyperphosphatemia post-phosphate enema. Journal of Bone and Mineral<br>Metabolism, 2013, 31, 703-707.  | 1.3 | 8         |
| 132 | Tacrolimus Prevents TWEAK-Induced PLA2R Expression in Cultured Human Podocytes. Journal of Clinical Medicine, 2020, 9, 2178.                                                                                         | 1.0 | 8         |
| 133 | TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor<br>Agonist Paricalcitol in Renal Disease. Journal of the American Society of Nephrology: JASN, 2020, 31,<br>2026-2042. | 3.0 | 8         |
| 134 | Uromodulin, Inflammasomes, and Pyroptosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 1761-1763.                                                                                                 | 3.0 | 7         |
| 135 | <scp>TWEAK–Fn14</scp> as a common pathway in the heart and the kidneys in cardiorenal syndrome.<br>Journal of Pathology, 2021, 254, 5-19.                                                                            | 2.1 | 7         |
| 136 | Caspase-12 and Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 886-888.                                                                                                         | 3.0 | 5         |
| 137 | MAP3K kinases and kidney injury. Nefrologia, 2019, 39, 568-580.                                                                                                                                                      | 0.2 | 5         |
| 138 | Colon cancer modulation by a diabetic environment: A single institutional experience. PLoS ONE, 2017, 12, e0172300.                                                                                                  | 1.1 | 5         |
| 139 | Taming Apoptosis in Peritoneal Dialysis. Peritoneal Dialysis International, 2009, 29, 45-48.                                                                                                                         | 1.1 | 4         |
| 140 | TWEAK and the Kidney: the Dual Role of a Multifunctional Cytokine. Advances in Experimental Medicine and Biology, 2011, 691, 323-335.                                                                                | 0.8 | 4         |
| 141 | nrip1 (Nuclear Receptor-Interacting Protein 1). , 2012, , 1268-1274.                                                                                                                                                 |     | 0         |
| 142 | NR1B1., 2012, , 1261-1261.                                                                                                                                                                                           |     | 0         |
| 143 | NCAM1. , 2012, , 1183-1187.                                                                                                                                                                                          |     | 0         |

| #   | Article                            | IF | CITATIONS |
|-----|------------------------------------|----|-----------|
| 145 | Fn14., 2016,, 1-11.                |    | 0         |
| 146 | NF-κB Family. , 2018, , 3466-3475. |    | 0         |
| 147 | Fn14., 2018,, 1790-1800.           |    | 0         |