List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2516825/publications.pdf Version: 2024-02-01

Νλλτασιι δακαι

#	Article	IF	CITATIONS
1	Nonlinear Optical (NLO) Polymers. 3. NLO Polyimide with Dipole Moments Aligned Transverse to the Imide Linkage. Macromolecules, 1998, 31, 7764-7769.	2.2	186
2	Nonlinear Optical Polymers. 2. Novel NLO Linear Polyurethane with Dipole Moments Aligned Transverse to the Main Backbone. Macromolecules, 1996, 29, 592-597.	2.2	69
3	Nonlinear optical polymers. 1. Novel network polyurethane with azobenzene dye in the main frame. Macromolecules, 1995, 28, 6437-6442.	2.2	64
4	Real-time three-dimensional holographic display using a monolithic organic compound dispersed film. Optical Materials Express, 2012, 2, 1003.	1.6	60
5	Biodegradability of Poly(ethylene terephthalate) Copolymers with Poly(ethylene glycol)s and Poly(tetramethylene glycol). Polymer International, 1996, 39, 83-89.	1.6	53
6	Orientational Relaxation of Transversely Aligned Nonlinear Optical Dipole Moments to the Main Backbone in the Linear Polyurethane. Macromolecules, 1997, 30, 4584-4589.	2.2	52
7	Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation. Journal of Environmental Chemical Engineering, 2020, 8, 103921.	3.3	51
8	Synthesis and enzymatic degradation of regular network aliphatic polyesters. Reactive and Functional Polymers, 1996, 30, 165-171.	2.0	50
9	Environmentally Friendly Chitosan-Modified Polycaprolactone Nanofiber/Nanonet Membrane for Controllable Oil/Water Separation. ACS Applied Polymer Materials, 2021, 3, 3891-3901.	2.0	47
10	Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Applied Physics Letters, 2003, 83, 2533-2535.	1.5	46
11	Poly(ethylene terephthalate) copolymers with a smaller amount of poly(ethylene glycol)s and poly(butylene glycol)s. Polymer, 1995, 36, 2629-2635.	1.8	45
12	Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters. Journal of Polymer Science Part A, 1999, 37, 2005-2011.	2.5	45
13	Hydrolytic Degradation of Aliphatic Polyesters Copolymerized with Poly(ethylene glycol)s. Polymer International, 1997, 42, 33-38.	1.6	39
14	High-Speed Photorefractive Response Capability in Triphenylamine Polymer-Based Composites. Applied Physics Express, 2012, 5, 064101.	1.1	36
15	A spiropyran-based X-ray sensitive fiber. Chemical Communications, 2015, 51, 11170-11173.	2.2	36
16	Antibacterial and Osteoconductive Effects of Chitosan/Polyethylene Oxide (PEO)/Bioactive Glass Nanofibers for Orthopedic Applications. Applied Sciences (Switzerland), 2020, 10, 2360.	1.3	36
17	Centrifugally Spun Recycled PET: Processing and Characterization. Polymers, 2018, 10, 680.	2.0	34
18	Enzymatic degradation of poly(ethylene terephthalate) copolymers with aliphatic dicarboxylic acids and/or poly(ethylene glycol). European Polymer Journal, 1997, 33, 1701-1705.	2.6	33

#	Article	IF	CITATIONS
19	Charge Recombination Luminescence via the Photoionization of a Dopant Chromophore in Polymer Solids. Macromolecules, 1997, 30, 5376-5383.	2.2	32
20	Synthesis, Characterization, and Enzymatic Degradation of Novel Regular Network Aliphatic Polyesters Based on Pentaerythritol. Macromolecules, 1997, 30, 6525-6530.	2.2	32
21	Quickly Updatable Hologram Images Using Poly(N-vinyl Carbazole) (PVCz) Photorefractive Polymer Composite. Materials, 2012, 5, 1477-1486.	1.3	32
22	Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzyl) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
23	Photorefractive Response of Polymeric Composites with Pendant Triphenylamine Moiety. Macromolecules, 2005, 38, 7521-7523.	2.2	31
24	Direct laser writing for micro-optical devices using a negative photoresist. Optics Express, 2017, 25, 31539.	1.7	29
25	Synthesis, Characterization, and Enzymatic Degradation Studies on Novel Network Aliphatic Polyesters. Macromolecules, 1998, 31, 6450-6454.	2.2	28
26	Facile and Scalable Fabrication of Porous Polystyrene Fibers for Oil Removal by Centrifugal Spinning. ACS Omega, 2019, 4, 15992-16000.	1.6	27
27	Biodegradable Network Polyesters from Gluconolactone and Citric Acid. Macromolecules, 2004, 37, 5971-5976.	2.2	26
28	Nature of the Enhancement in Ferroelectric Properties by Gold Nanoparticles in Vinylidene Fluoride and Trifluoroethylene Copolymer. ACS Applied Materials & Interfaces, 2016, 8, 16816-16822.	4.0	26
29	Fabrication and photochromic properties of Forcespinning® fibers based on spiropyran-doped poly(methyl methacrylate). RSC Advances, 2017, 7, 33061-33067.	1.7	26
30	Preparation and Characterization of Novel Biodegradable Optically Active Network Polyesters from Malic Acid. Macromolecules, 1999, 32, 7762-7767.	2.2	23
31	ESR studies of photosensitized degradation of poly(L-lactic acid) via photoionization of dopant. Journal of Polymer Science Part A, 2001, 39, 706-714.	2.5	23
32	Crystalline structures and ferroelectric properties of ultrathin films of vinylidene fluoride and trifluoroethylene copolymer. Thin Solid Films, 2005, 483, 340-345.	0.8	23
33	Separation and enzymatic degradation of blend films of poly(L-lactic acid) and cellulose. Journal of Polymer Science Part A, 1998, 36, 1861-1864.	2.5	22
34	Spin-Trapping Analysis and Characterization of Thermal Degradation of Thermoplastic Poly(ether–ester) Elastomer. Macromolecules, 2018, 51, 1088-1099.	2.2	22
35	Electron capture of dopants in two-photonic ionization in a poly(methyl methacrylate) solid. The Journal of Physical Chemistry, 1992, 96, 8855-8858.	2.9	21
36	Infrared spectra and ferro-electricity of ultra-thin films of vinylidene fluoride and trifluoroethylene copolymer. Polymer International, 2007, 56, 1254-1260.	1.6	21

#	Article	IF	CITATIONS
37	Initial distribution of geminate electron—hole pairs produced by two-photon ionization in poly(methyl methacrylate). Chemical Physics Letters, 1992, 188, 254-258.	1.2	20
38	Novel regular network polyimide films from mellitic acid and aliphatic and aromatic diamines or diisocyanates. Polymer, 1995, 36, 2657-2662.	1.8	20
39	Preparation and properties of biodegradable network poly(ester-carbonate) elastomers. Polymer, 2008, 49, 1506-1511.	1.8	20
40	Triphenylamine photoconductive polymers for high performance photorefractive devices. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 291, 26-33.	2.0	20
41	Nonlinear optical polymers with dipole moment aligned transverse to main chain. Applied Physics Letters, 1995, 67, 2272-2274.	1.5	19
42	Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes. Organic Electronics, 2013, 14, 2987-2993.	1.4	19
43	Re-evaluation of the origin of relaxor ferroelectricity in vinylidene fluoride terpolymers: An approach using switching current measurements. Scientific Reports, 2017, 7, 15871.	1.6	19
44	Main chain scission reaction of poly(methyl methacrylate) caused by two-photon ionization of dopant. Journal of Polymer Science Part A, 1995, 33, 1969-1978.	2.5	18
45	Charge Recombination of Electronâ^Cation Pairs Formed in Polymer Solids at 20 K through Two-Photon Ionization. Journal of Physical Chemistry B, 1997, 101, 10241-10247.	1.2	18
46	Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation. Physical Chemistry Chemical Physics, 2016, 18, 17024-17028.	1.3	18
47	Preparation of a Novel Flame Retardant Formulation for Cotton Fabric. Materials, 2020, 13, 54.	1.3	18
48	Four-factor optimization for PET glycolysis with consideration of the effect of sodium bicarbonate catalyst using response surface methodology. Polymer Degradation and Stability, 2020, 179, 109257.	2.7	18
49	Optimization of Photorefractivity Based on Poly(<i>N</i> â€vinylcarbazole) Composites: An Approach from the Perspectives of Chemistry and Physics. Macromolecular Chemistry and Physics, 2013, 214, 1789-1797.	1.1	17
50	Radiation-induced colour changes in a spiropyran/BaFCl:Eu ²⁺ /polystyrene composite film and nonwoven fabric. New Journal of Chemistry, 2016, 40, 8658-8663.	1.4	16
51	Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter. ACS Applied Materials & Interfaces, 2018, 10, 11926-11932.	4.0	16
52	Chitosanâ€Functionalized Recycled Polyethylene Terephthalate Nanofibrous Membrane for Sustainable Onâ€Demand Oilâ€Water Separation. Global Challenges, 2021, 5, 2000107.	1.8	16
53	Biodegradable network elastomeric polyesters from multifunctional aromatic carboxylic acids and poly(?-caprolactone) diols. Journal of Polymer Science Part A, 2002, 40, 4523-4529.	2.5	15
54	Re-evaluation of all-plastic organic dye laser with DFB structure fabricated using photoresists. Scientific Reports, 2016, 6, 34741.	1.6	15

#	Article	IF	CITATIONS
55	Radical anion mechanism for chain scission of poly(methyl methacrylate) via electron transfer. Macromolecular Rapid Communications, 1994, 15, 551-557.	2.0	14
56	Polarization Reversal and Second-Order Optical Nonlinearity of Uniaxially Drawn Aliphatic Polyurea. Macromolecules, 1999, 32, 3249-3256.	2.2	14
57	Spin-Trapping Analysis of Thermal Degradation Reaction of Poly(butylene terephthalate). Macromolecules, 2017, 50, 254-263.	2.2	14
58	Fabrication of three-dimensional microstructures in positive photoresist through two-photon direct laser writing. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	14
59	Charge Recombination via Electron Tunneling after Two-Photon Ionization of Dopant Chromophore in Poly(butyl methacrylate) Film at 20 K. Bulletin of the Chemical Society of Japan, 1997, 70, 2665-2670.	2.0	13
60	High performance photorefractive molecular glass composites in reflection gratings. Chemical Physics Letters, 2005, 408, 269-273.	1.2	13
61	Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth. Applied Physics A: Materials Science and Processing, 2011, 103, 421-426.	1.1	13
62	Towards nonvolatile memory devices based on ferroelectric polymers. AIP Advances, 2012, 2, .	0.6	13
63	Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms. NPG Asia Materials, 2016, 8, e311-e311.	3.8	13
64	Photoionization and thermoluminescence in poly(alkyl methacrylate) films. Synthetic Metals, 1996, 81, 301-304.	2.1	12
65	Diffraction Measurement for Grating Formed in Optically Poled Polymeric Materials. Japanese Journal of Applied Physics, 2001, 40, 2264-2268.	0.8	12
66	Biodegradable Network Elastomeric Polyesters from Multifunctional Aliphatic Carboxylic Acids and Poly(E›-caprolactone) Diols. Macromolecular Bioscience, 2006, 6, 333-339.	2.1	12
67	Dynamic holographic images using poly(N-vinylcarbazole)-based photorefractive composites. Polymer Journal, 2013, 45, 665-670.	1.3	12
68	Fabrication of the silver structure through two-photon excitation by femtosecond laser. Chemical Physics Letters, 2014, 610-611, 241-245.	1.2	12
69	Carrier-assisted dyeing of poly(l -lactic acid) fibers with dispersed photochromic spiropyran dyes. Dyes and Pigments, 2017, 145, 444-450.	2.0	12
70	High-Performance All-Organic DFB and DBR Waveguide Laser with Various Grating Height Fabricated by a Two-Photon Absorption DLW Method. Scientific Reports, 2019, 9, 10582.	1.6	12
71	Spin-trapping analysis for thermal degradation of poly(vinyl alcohol). Polymer, 2021, 217, 123416.	1.8	12
72	All-plastic organic dye laser with distributed feedback resonator structure. Thin Solid Films, 2008, 516, 2783-2787.	0.8	11

#	Article	IF	CITATIONS
73	Effect of sensitizer on photorefractive nonlinear optics in poly(N-vinylcarbazole) based polymer composites. Chemical Physics, 2008, 344, 189-194.	0.9	11
74	Enhanced performance of photorefractive poly(<i>N</i> â€vinyl carbazole) composites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 414-420.	2.4	11
75	Recent advances in photorefractivity of poly(4-diphenylaminostyrene) composites: Wavelength dependence and dynamic holographic images. Japanese Journal of Applied Physics, 2014, 53, 082601.	0.8	11
76	Leuco-Based Composite Resin Dosimeter Film. ACS Omega, 2019, 4, 9946-9951.	1.6	11
77	Synthesis and characterization of biodegradable network poly(ethylene glycol) films with elastic properties. Journal of Applied Polymer Science, 2007, 106, 2885-2891.	1.3	10
78	Photorefractive Composite Based on a Monolithic Polymer. Macromolecular Chemistry and Physics, 2012, 213, 982-988.	1.1	10
79	Nonlinear optical (NLO) polymers. IV. Second-order optical nonlinearity of NLO polyurea and copolyurea with NLO dipole moments aligned transverse to the main backbone. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 247-255.	2.4	9
80	Enhanced photoconductivity and trapping rate through control of bulk state in organic triphenylamine-based photorefractive materials. Organic Electronics, 2014, 15, 3471-3475.	1.4	9
81	Advantage of the circular polarization of light in the updatable holographic response in an azo-carbazole monolithic dye dispersed acrylate matrix. Optical Materials Express, 2017, 7, 1647.	1.6	9
82	Internal Electric Field and Second-Order Optical Nonlinearity of Ferroelectric Nylon 11. Macromolecules, 1997, 30, 1637-1642.	2.2	8
83	Stabilization of photoejected electrons produced through two-photon ionization of dopant chromophores in electron-accepting polyester film. Chemical Physics Letters, 1997, 276, 297-302.	1.2	8
84	Precise study of nonlinear optical coefficients and hyperpolarizabilities in cold-drawn and poled ferroelectric Nylon 11 films. Journal of Chemical Physics, 1998, 108, 9839-9850.	1.2	8
85	Synthesis, characterization, and biodegradability of novel regular-network polyester-amines based on 1,1,1-triethanolamine. Journal of Polymer Science Part A, 2001, 39, 2896-2903.	2.5	8
86	Photorefractive dynamics in poly(triarylamine)-based polymer composite: an approach utilizing a second electron trap to reduce the photoconductivity. Optical Materials Express, 2018, 8, 401.	1.6	8
87	Optimal composition of the poly(triarylamine)-based polymer composite to maximize photorefractive performance. Scientific Reports, 2019, 9, 739.	1.6	8
88	X-ray Visualization and Quantification Using Fibrous Color Dosimeter Based on Leuco Dye. Applied Sciences (Switzerland), 2020, 10, 3798.	1.3	8
89	Spin trapping analysis of the thermal degradation of polypropylene. Polymer Degradation and Stability, 2022, 197, 109871.	2.7	8
90	Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application. European Polymer Journal, 2022, 169, 111123.	2.6	8

#	Article	IF	CITATIONS
91	All Optically Induced χ(2)Structures and Their Optical Anisotropy in Betaine Dispersed in Polymer Matrix. Japanese Journal of Applied Physics, 2002, 41, 5247-5253.	0.8	7
92	Influence of baking conditions on 3D microstructures by direct laser writing in negative photoresist SU-8 via two-photon polymerization. Journal of Laser Applications, 2017, 29, .	0.8	7
93	Understanding ferroelectric performances of spinâ€coated odd–odd nylon thin films. Journal of Applied Polymer Science, 2019, 136, 47595.	1.3	7
94	Ferroelectric performance of nylons 6-12, 10-12, 11-12, and 12-12. RSC Advances, 2020, 10, 15740-15750.	1.7	7
95	Synthesis of a Novel Cyclic Compound from a Direct Reaction between Trioxane and Ethylene Oxide Journal of Fiber Science and Technology, 1998, 54, 167-171.	0.0	7
96	Regular network polyesters from benzenepolycarboxylic acids and glycol. Polymer, 1995, 36, 5045-5049.	1.8	6
97	Asymmetric energy transfer and optical diffraction in novel molecular glass with carbazole moiety. Optical Materials, 2006, 29, 435-438.	1.7	6
98	Recent Development of Biodegradable Network Polyesters Obtained from Renewable Natural Resources. Clean - Soil, Air, Water, 2008, 36, 682-686.	0.7	6
99	Two-photon excitation by femtosecond laser in poly(N-vinylpyrrolidone) matrix doped with silver ions. Chemical Physics Letters, 2013, 558, 62-65.	1.2	6
100	Ferroelectric Switching of Vinylidene and Trifluoroethylene Copolymer Thin Films on Au Electrodes Modified with Self-Assembled Monolayers. Materials, 2014, 7, 6367-6376.	1.3	6
101	Influence of an Interfacial Effect on the Laser Performance of a Rhodamine 6G/Cellulose Acetate Waveguide on a Vinylidene Fluoride Copolymer Layer. Langmuir, 2018, 34, 7527-7535.	1.6	6
102	Material Design of Azo arbazole Copolymers for Preservation Stability with Rewritable Holographic Stereograms. Macromolecular Chemistry and Physics, 2019, 220, 1800456.	1.1	6
103	Effect of BaTiO3 on the aging process of PLA fibers obtained by centrifugal spinning. Materials Today Chemistry, 2021, 20, 100461.	1.7	6
104	Analysis of the Reaction in the Early Stage of the Copolymerization of Trioxane and Ethylene Oxide. 2-Formation of 1,3,5,7,10-Pentaoxacyclododecane Journal of Fiber Science and Technology, 1998, 54, 285-289.	0.0	6
105	Generation of Ince–Gaussian Beams Using Azocarbazole Polymer CGH. Journal of Imaging, 2022, 8, 144.	1.7	6
106	Thermal diffusivity study of polystyrene/poly(vinyl methyl ether) blends by flash radiometry. , 1997, 35, 1869-1876.		5
107	Characterization of Carrier Transport and Trapping in Photorefractive Polymer Composites Using Photoemission Yield Spectroscopy in Air. Macromolecular Chemistry and Physics, 2016, 217, 1785-1791.	1.1	5
108	Enhanced photorefractivity of a perylene bisimide-sensitized poly(4-(diphenylamino) benzyl acrylate) composite. Optical Materials Express, 2016, 6, 1714.	1.6	5

#	Article	IF	CITATIONS
109	Fabrication of silver helix microstructures in a large area by a two-photon absorption DLW method. Scientific Reports, 2021, 11, 15860.	1.6	5
110	Compact and Scalable Large Vortex Array Generation Using Azocarbazole Polymer and Digital Hologram Printing Technique. Nanoscale Research Letters, 2022, 17, 44.	3.1	5
111	Synthesis and Enzymatic Degradation of Nylon 66 Copolymers with Poly(Ethyleneglycol)s. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1153-1163.	1.2	4
112	Photorefractivity of Perylene Bisimideâ€Sensitized Poly(4â€(diphenylamino)benzyl acrylate). Macromolecular Chemistry and Physics, 2016, 217, 85-91.	1.1	4
113	Re-evaluation of the Energy Density Properties of VDF Ferroelectric Thin-Film Capacitors. ACS Omega, 2020, 5, 30468-30477.	1.6	4
114	Network Copolyesters from Benzenepolycarboxylic Acids and 1,6-Hexanediol. Polymer International, 1996, 40, 17-23.	1.6	3
115	Synthesis and Enzymatic Degradation of Aliphatic Polyesters Copolymerized with Trimesic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 965-973.	1.2	3
116	Photosensitized Reaction of Poly(L-lactic Acid) via Two-Photon Ionization of Dopant. Materials Research Society Symposia Proceedings, 2001, 708, 391.	0.1	3
117	Electron dominated grating in a triphenylamine-based photorefractive composite. Journal of Materials Chemistry C, 2016, 4, 6822-6828.	2.7	3
118	Holographic Performance of Azo-Carbazole Dye-Doped UP Resin Films Using a Dyeing Process. Materials, 2019, 12, 945.	1.3	3
119	Ferroelectric switching in spinâ€coated nylons 11 and 12. Journal of Applied Polymer Science, 2020, 137, 48438.	1.3	3
120	Dynamic holographic images using photorefractive composites. , 2012, , .		3
121	Enzymatic Degradation of Melt-Spun Fibers from Poly(butylene succinate) Copolyesters with Terephthalic Acid Journal of Fiber Science and Technology, 2001, 57, 178-183.	0.0	2
122	Quickly updatable hologram images with high performance photorefractive polymer composites. Proceedings of SPIE, 2012, , .	0.8	2
123	Synthesis and properties of biodegradable network poly(etherâ€urethane)s from <scp>L</scp> â€lysine triisocyanate and poly(alkylene glycol)s. Journal of Applied Polymer Science, 2012, 126, E358.	1.3	2
124	Flexible All-Organic Photorefractive Devices. ACS Applied Electronic Materials, 2019, 1, 238-245.	2.0	2
125	Triphenylamine-Based Plasticizer in Controlling Traps and Photorefractivity Enhancement. ACS Applied Electronic Materials, 2021, 3, 2170-2177.	2.0	2
126	X-ray composite fibrous color dosimeter based on 10,12-pentacosadiynoic acid. Dyes and Pigments, 2021, 191, 109356.	2.0	2

#	Article	IF	CITATIONS
127	Photorefractive Response Enhancement in Poly(triarylamine)-Based Polymer Composites by a Second Electron Trap Chromophore. ACS Omega, 2022, 7, 12120-12126.	1.6	2
128	Polarization and Internal Electric Field in Aromatic Polyamides Based onm-Xylylenediamine with Linear Aliphatic Dicarboxylic Acids. Macromolecules, 1996, 29, 8883-8887.	2.2	1
129	Preparation and properties of nylon 66 copolymers with 2,2-dialkyl-1,3-propanediols. Polymer, 1996, 37, 327-331.	1.8	1
130	Novel Nonlinear Optical Polymers. ACS Symposium Series, 1997, , 151-168.	0.5	1
131	Photorefractive performances in polymeric and molecular glass composites for optical memories. , 2006, , .		1
132	Dynamic holographic images using polyvinylcarbazole-based photorefractive composites. , 2012, , .		1
133	Triphenylamine-based acrylate polymers for photorefractive composite. Proceedings of SPIE, 2014, , .	0.8	1
134	Electron spin resonance and photoelectron yield spectroscopic studies for photocarrier behavior in photorefractive polymeric composites. Organic Electronics, 2019, 68, 248-255.	1.4	1
135	Enhancement of Amplified Spontaneous Emission and Laser Performance of Rhodamine 6G/Cellulose Acetate DFB and DBR Waveguide Devices: A Role of Thermally Annealed P(VDF-TrFE) Intermediate Layer. ACS Applied Electronic Materials, 2020, 2, 1514-1521.	2.0	1
136	Theoretical Limit of the Colorâ€Change Sensitivity of a Composite Resin Dosimeter Film Based on Spiropyran/BaFCl : Eu 2+ /Polystyrene. ChemistryOpen, 2020, 9, 623-627.	0.9	1
137	Biodegradability of poly(ethylene terephthalate) copolymers with poly(ethylene glycol)s and poly(tetramethylene glycol). , 1996, 39, 83.		1
138	Photo-reduction of silver ion by two-photon excitation using femtosecond laser. , 2012, , .		0
139	Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes. Proceedings of SPIE, 2014, , .	0.8	Ο
140	Nylon 10-12-based ferroelectric capacitor for energy storage. AIP Advances, 2020, 10, 095323.	0.6	0
141	Fully Updatable Three-dimensional Holographic Display Device Using a Monolithic Compound. , 2012, , .		Ο
142	Triphenylamine-Based Photorefractive Devices for Real-Time Holographic Applications. , 2013, , .		0
143	Poly(triphenylamine)-based composites for high-speed photorefractive response time. , 2013, , .		0
144	Quickly Updatable Holographic Display Device Based on Organic Monolithic Compound Dispersed Film. , 2013, , .		0

#	Article	IF	CITATIONS
145	Effect of Scouring and Bleaching on Chemical Modification of Cotton Sliver by EB-Induced Graft Polymerization. Journal of Fiber Science and Technology, 2020, 76, 119-126.	0.2	0