James E Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2516589/publications.pdf

Version: 2024-02-01

		186265	206112
55	2,423	28	48
papers	citations	h-index	g-index
76	76	76	2518
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Scope, Limitations and Mechanistic Analysis of the HyperBTMâ€Catalyzed Acylative Kinetic Resolution of Tertiary Heterocyclic Alcohols**. European Journal of Organic Chemistry, 2022, 2022, e202101111.	2.4	4
2	Brønsted Acidâ€Catalysed Dehydrative Substitution Reactions of Alcohols. Chemistry - A European Journal, 2021, 27, 106-120.	3.3	47
3	Unanticipated Silyl Transfer in Enantioselective α,β-Unsaturated Acyl Ammonium Catalysis Using Silyl Nitronates. Organic Letters, 2020, 22, 335-339.	4.6	22
4	Arylboronic Acid Catalyzed <i>C</i> -Alkylation and Allylation Reactions Using Benzylic Alcohols. Organic Letters, 2020, 22, 7547-7551.	4.6	21
5	Evaluating aryl esters as bench-stable C(1)-ammonium enolate precursors in catalytic, enantioselective Michael addition–lactonisations. Organic and Biomolecular Chemistry, 2019, 17, 4747-4752.	2.8	19
6	A Selective Deprotection Strategy for the Construction oftrans-2-Aminocyclopropanecarboxylic Acid Derived Peptides. Organic Letters, 2019, 21, 100-103.	4.6	6
7	Aryl Boronic Acid Catalysed Dehydrative Substitution of Benzylic Alcohols for Câ^O Bond Formation. Chemistry - A European Journal, 2019, 25, 3950-3956.	3.3	40
8	A C=Oâ«â«lsothiouronium Interaction Dictates Enantiodiscrimination in Acylative Kinetic Resolutions of Tertiary Heterocyclic Alcohols. Angewandte Chemie - International Edition, 2018, 57, 3200-3206.	13.8	102
9	A C=Oâ«â«lsothiouronium Interaction Dictates Enantiodiscrimination in Acylative Kinetic Resolutions of Tertiary Heterocyclic Alcohols. Angewandte Chemie, 2018, 130, 3254-3260.	2.0	43
10	Synthesis of the natural product descurainolide and cyclic peptides from lignin-derived aromatics. Organic and Biomolecular Chemistry, 2018, 16, 266-273.	2.8	6
11	Best practice considerations for using the selectivity factor, s, as a metric for the efficiency of kinetic resolutions. Tetrahedron, 2018, 74, 5554-5560.	1.9	55
12	Isothiourea-Catalyzed Enantioselective Functionalization of 2-Pyrrolyl Acetic Acid: Two-Step Synthesis of Stereodefined Dihydroindolizinones. Organic Letters, 2018, 20, 5482-5485.	4.6	24
13	Enantioselective NHC-catalysed redox [4+2]-hetero-Diels-Alder reactions using α-aroyloxyaldehydes and unsaturated ketoesters. Tetrahedron: Asymmetry, 2017, 28, 355-366.	1.8	16
14	Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study. Journal of the American Chemical Society, 2017, 139, 4366-4375.	13.7	92
15	N- to C-sulfonyl photoisomerisation of dihydropyridinones: a synthetic and mechanistic study. Organic and Biomolecular Chemistry, 2017, 15, 8914-8922.	2.8	10
16	Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of \hat{l}_{\pm} -Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement. Journal of the American Chemical Society, 2017, 139, 11895-11902.	13.7	117
17	Isothiourea-catalysed enantioselective pyrrolizine synthesis: synthetic and computational studies. Organic and Biomolecular Chemistry, 2016, 14, 8957-8965.	2.8	23
18	Enantioselective Stereodivergent Nucleophileâ€Dependent Isothioureaâ€Catalysed Domino Reactions. Chemistry - A European Journal, 2016, 22, 17748-17757.	3.3	33

#	Article	IF	CITATIONS
19	Exploiting the Imidazolium Effect in Baseâ€free Ammonium Enolate Generation: Synthetic and Mechanistic Studies. Angewandte Chemie, 2016, 128, 14606-14611.	2.0	15
20	Isothioureaâ€Catalysed Acylative Kinetic Resolution of Aryl–Alkenyl (sp ² vs.) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 702 ⁻
21	Exploiting the Imidazolium Effect in Baseâ€free Ammonium Enolate Generation: Synthetic and Mechanistic Studies. Angewandte Chemie - International Edition, 2016, 55, 14394-14399.	13.8	50
22	Asymmetric Isothiourea atalysed Formal [3+2] Cycloadditions of Ammonium Enolates with Oxaziridines. Chemistry - A European Journal, 2015, 21, 10530-10536.	3.3	35
23	Rate and Equilibrium Constants for the Addition of Nâ€Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2â€Substituent Effect. Angewandte Chemie, 2015, 127, 6991-6996.	2.0	29
24	Catalytic Stereoselective [2,3]-Rearrangement Reactions. ACS Catalysis, 2015, 5, 7446-7479.	11.2	132
25	Exploring the scope of the isothiourea-mediated synthesis of dihydropyridinones. Organic and Biomolecular Chemistry, 2015, 13, 2177-2191.	2.8	38
26	Rate and Equilibrium Constants for the Addition of Nâ€Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2â€Substituent Effect. Angewandte Chemie - International Edition, 2015, 54, 6887-6892.	13.8	63
27	Enantioselective NHC-Catalyzed Redox [4 + 2]-Hetero-Diels–Alder Reactions Using α,β-Unsaturated Trichloromethyl Ketones as Amide Equivalents. Journal of Organic Chemistry, 2015, 80, 9728-9739.	3.2	34
28	Organocatalytic Synthesis of Fused Bicyclic 2,3-Dihydro-1,3,4-oxadiazoles through an Intramolecular Cascade Cyclization. Organic Letters, 2015, 17, 5824-5827.	4.6	23
29	A Modular Approach for the Synthesis of Nanometer-Sized Polynitroxide Multi-Spin Systems. Journal of Organic Chemistry, 2014, 79, 8313-8323.	3.2	13
30	Stereodivergent Organocatalytic Intramolecular Michael Addition/Lactonization for the Asymmetric Synthesis of Substituted Dihydrobenzofurans and Tetrahydrofurans. Chemistry - A European Journal, 2014, 20, 9762-9769.	3.3	49
31	Organocatalytic Michael addition–lactonisation of carboxylic acids using α,β-unsaturated trichloromethyl ketones as α,β-unsaturated ester equivalents. Organic and Biomolecular Chemistry, 2014, 12, 9016-9027.	2.8	41
32	Asymmetric NHC-Catalyzed Redox α-Amination of α-Aroyloxyaldehydes. Organic Letters, 2013, 15, 6058-6061.	4.6	60
33	Solid-phase asymmetric synthesis using a polymer-supported chiral Evans'-type oxazolidin-2-one. Nature Protocols, 2013, 8, 1890-1906.	12.0	3
34	Stereospecific Asymmetric N-Heterocyclic Carbene (NHC)-Catalyzed Redox Synthesis of Trifluoromethyl Dihydropyranones and Mechanistic Insights. Journal of Organic Chemistry, 2013, 78, 9243-9257.	3.2	64
35	lodide as an Activating Agent for Acid Chlorides in Acylation Reactions. Organic Letters, 2013, 15, 702-705.	4.6	33
36	NHC-Promoted Asymmetric \hat{l}^2 -Lactone Formation from Arylalkylketenes and Electron-Deficient Benzaldehydes or Pyridinecarboxaldehydes. Journal of Organic Chemistry, 2013, 78, 3925-3938.	3.2	66

#	Article	IF	Citations
37	Enantioselective NHC-Catalysed Formal [4+2] Cycloaddition of AlkylarylÂketenes with \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}^4 -Ketophosphonates. Synlett, 2013, 24, 1243-1249.	1.8	11
38	<i>N</i> -Acyl DBN Tetraphenylborate Salts as <i>N</i> -Acylating Agents. Journal of Organic Chemistry, 2012, 77, 2808-2818.	3.2	32
39	Dihydroxylation-Based Approach for the Asymmetric Syntheses of Hydroxy-Î ³ -butyrolactones. Journal of Organic Chemistry, 2012, 77, 543-555.	3.2	18
40	Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chemical Society Reviews, 2012, 41, 2109.	38.1	405
41	Dioctylamineâ€6ulfonamideâ€Modified Carbon Nanoparticles as High Surface Area Substrates for Coenzyme Q10Lipid Electrochemistry. Electroanalysis, 2012, 24, 1003-1010.	2.9	11
42	Mechanistic aspects of aldehyde and imine electro-reduction in a liquid–liquid carbon nanofiber membrane microreactor. Tetrahedron Letters, 2012, 53, 3357-3360.	1.4	10
43	N-Acyl 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) tetraphenylborate salts as O-acylating agents. Tetrahedron Letters, 2012, 53, 4074-4076.	1.4	14
44	Asymmetric Strecker Synthesis of α-Arylglycines. Journal of Organic Chemistry, 2011, 76, 6038-6047.	3.2	29
45	Asymmetric Synthesis of Chiral δ-Lactones Containing Multiple Contiguous Stereocenters. Organic Letters, 2011, 13, 3592-3595.	4.6	13
46	Carbon Nanoparticle Surface Electrochemistry: Highâ€Density Covalent Immobilisation and Poreâ€Reactivity of 9,10â€Anthraquinone. Electroanalysis, 2011, 23, 1320-1324.	2.9	22
47	Liquid–liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte. Electrochimica Acta, 2011, 56, 6764-6770.	5.2	10
48	Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide. Physical Chemistry Chemical Physics, 2010, 12, 4872.	2.8	27
49	Friedelâ^'Crafts Acylation of Pyrroles and Indoles using 1,5-Diazabicyclo[4.3.0]non-5-ene (DBN) as a Nucleophilic Catalyst. Organic Letters, 2010, 12, 5740-5743.	4.6	90
50	Borrowing Hydrogen in Water and Ionic Liquids: Iridium-Catalyzed Alkylation of Amines with Alcohols. Organic Process Research and Development, 2010, 14, 1046-1049.	2.7	103
51	Synthesis of furans, pyrroles and pyridazines by a ruthenium-catalysed isomerisation of alkynediols and in situ cyclisation. Tetrahedron, 2009, 65, 8981-8986.	1.9	54
52	"Click-fluors―  Modular Fluorescent Saccharide Sensors Based on a 1,2,3-Triazole Ring. Journal of Organic Chemistry, 2008, 73, 2871-2874.	3.2	92
53	Voltammetric Measurements at the Surface of Cotton:Â Absorption and Catalase Reactivity of a Dinuclear Manganese Complex. Langmuir, 2007, 23, 2239-2246.	3.5	8
54	An Intermolecular Double [2+2] Cyclodimerization of a Tetraalkyne. Angewandte Chemie - International Edition, 2007, 46, 2266-2268.	13.8	6

#	Article	IF	CITATIONS
55	Voltammetric study of absorption and reactivity of metal complexes in cotton immersed in aqueous buffer solutions. Journal of Electroanalytical Chemistry, 2007, 601, 211-219.	3.8	5