Vera V Voinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2516122/publications.pdf

Version: 2024-02-01

840776 752698 29 421 11 20 citations h-index g-index papers 32 32 32 380 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Competitive Biosynthesis of Bacterial Alginate Using Azotobacter vinelandii 12 for Tissue Engineering Applications. Polymers, 2022, 14, 131.	4.5	8
2	A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications. Polymer Journal, 2022, 54, 1225-1236.	2.7	11
3	Honeycomb-Structured Porous Films from Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Physicochemical Characterization and Mesenchymal Stem Cells Behavior. Polymers, 2022, 14, 2671.	4.5	4
4	Internet of Things and Robotics in Transforming Current-Day Healthcare Services. Journal of Healthcare Engineering, 2021, 2021, 1-15.	1.9	27
5	The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro. Polymers, 2021, 13, 108.	4.5	21
6	Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers, 2020, 12, 728.	4.5	28
7	Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. Materials Science and Engineering C, 2020, 114, 110991.	7.3	51
8	Effect of bacterial alginate on growth of mesenchymal stem cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 115-118.	3.4	7
9	Biosynthesis of Alginate and Poly(3-Hydroxybutyrate) by the Bacterial Strain Azotobacter agile 12. Applied Biochemistry and Microbiology, 2019, 55, 654-659.	0.9	8
10	Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World Journal of Stem Cells, 2019, 11, 764-786.	2.8	13
11	Đ›ĐμĐºĐ°Ñ€ÑÑ,Đ²ĐμĐ½Đ½Ñ‹Đμ ÑиÑÑ,ĐμĐ¼Ñ‹ Đ½Đ° Đ¾ÑĐ½Đ¾Đ²Đμ Đ¿Đ¾Đ»Đ¸-3-Đ¾ĐºÑĐ¸Đ°Đ»ĐºĐՙ	℉₺₺₽¾₽)°Ñ¢Đ¾Đ2: и¦
12	Poly(3-hydroxyalkanoate)-based drug formulations: the micro- and nanostructure. Bulletin of Russian State Medical University, 2019, , 120-124.	0.2	0
13	Poly(3-hydroxybutyrate) and Human Microbiota (Review). Applied Biochemistry and Microbiology, 2018, 54, 547-568.	0.9	6
14	Biodegradation of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxy-4-Methylvalerate) Films by Porcine Pancreatic Lipase. Key Engineering Materials, 2018, 779, 57-63.	0.4	0
15	Hydrolytic Degradation of Poly(3-Hydroxybutyrate) and Its Copolymer with 3-Hydroxyvalerate of Different Molecular Weights in vitro. Biophysics (Russian Federation), 2018, 63, 169-176.	0.7	3
16	Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech, 2018, 8, 328.	2.2	16
17	BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate). Applied Biochemistry and Microbiology, 2018, 54, 379-386.	0.9	4
18	Biosynthesis of poly(3-hydroxybutyrate) copolymers by <i>Azotobacter chroococcum</i> 7B: A precursor feeding strategy. Preparative Biochemistry and Biotechnology, 2017, 47, 173-184.	1.9	21

#	Article	IF	CITATIONS
19	Alginate biosynthesis by Azotobacter bacteria. Applied Biochemistry and Microbiology, 2017, 53, 52-59.	0.9	13
20	3D-Scaffolds from Poly(3-hydroxybutyrate)Poly(ethylene glycol) Copolymer for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2016, 6, 42-52.	0.1	29
21	Development and Preclinical Studies of Orthotopic Bone Implants Based on a Hybrid Construction from Poly(3-Hydroxybutyrate) and Sodium Alginate. Sovremennye Tehnologii V Medicine, 2016, 8, 42-50.	1.1	10
22	Biosynthesis of poly(3-hydroxybutyrateco-3-hydroxy-4-methylvalerate) by Strain Azotobacter chroococcum 7B. Acta Naturae, 2016, 8, 77-87.	1.7	11
23	Culturing of Mouse Mesenchymal Stem Cells on Poly-3-Hydroxybutyrate Scaffolds. Bulletin of Experimental Biology and Medicine, 2015, 159, 567-571.	0.8	11
24	Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochemistry, 2013, 14, 12.	4.4	49
25	The Terpolymer Produced by Azotobacter Chroococcum 7B: Effect of Surface Properties on Cell Attachment. PLoS ONE, 2013, 8, e57200.	2.5	32
26	Activity of nucleoside diphosphate kinase \hat{l}_{\pm} (NDPK \hat{l}_{\pm}) capable of binding to outer mitochondrial membrane accounts for less than 10% of total NDPK activity present in cytoplasm of liver cells. Biochemistry (Moscow), 2012, 77, 593-602.	1.5	0
27	Degradation of Poly(3-hydroxybutyrate) and its Derivatives: Characterization and Kinetic Behavior. Chemistry and Chemical Technology, 2012, 6, 385-392.	1.1	8
28	Reversibility of nucleoside diphosphate kinase solubilization from the surface of the outer mitochondrial membrane. Biochemistry (Moscow), 2009, 74, 578-587.	1.5	1
29	Functional Coupling between Nucleoside Diphosphate Kinase of the Outer Mitochondrial Compartment and Oxidative Phosphorylation. Biochemistry (Moscow), 2005, 70, 1354-1362.	1.5	11