
Rosana Moriana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2515484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Barrier packaging solutions from residual biomass: Synergetic properties of CNF and LCNF in films. Industrial Crops and Products, 2022, 177, 114493.	2.5	26
2	Adjustable polysaccharides-proteins films made of aqueous wheat proteins and alginate solutions. Food Chemistry, 2022, 391, 133196.	4.2	13
3	Pine Cone Biorefinery: Integral Valorization of Residual Biomass into Lignocellulose Nanofibrils (LCNF)-Reinforced Composites for Packaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 2180-2190.	3.2	33
4	"Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material― Food Hydrocolloids, 2021, 121, 107019.	5.6	51
5	Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation. Carbohydrate Polymers, 2020, 250, 116916.	5.1	35
6	Cascade extraction of proteins and feruloylated arabinoxylans from wheat bran. Food Chemistry, 2020, 333, 127491.	4.2	14
7	Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustainable Chemistry and Engineering, 2019, 7, 6275-6286.	3.2	26
8	Super-hydrophobic zinc oxide/silicone rubber nanocomposite surfaces. Surfaces and Interfaces, 2019, 14, 146-157.	1.5	40
9	Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Industrial Crops and Products, 2019, 129, 123-134.	2.5	116
10	Rapeseed Straw Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 790-801.	3.2	18
11	Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 2018, 104, 10-18.	2.6	63
12	Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose, 2018, 25, 2925-2938.	2.4	67
13	From forest residues to hydrophobic nanocomposites with high oxygen-barrier properties. Nordic Pulp and Paper Research Journal, 2016, 31, 261-269.	0.3	5
14	Pyrolysis of kraft pulp and black liquor precipitates derived from spruce: Thermal and kinetic analysis. Fuel Processing Technology, 2016, 149, 275-284.	3.7	15
15	Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 2016, 139, 139-149.	5.1	128
16	Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Industrial Crops and Products, 2016, 83, 155-165.	2.5	199
17	Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties. Carbohydrate Polymers, 2016, 136, 146-153.	5.1	29
18	Model-free rate expression for thermal decomposition processes: The case of microcrystalline cellulose pyrolysis. Fuel, 2015, 143, 438-447.	3.4	34

ROSANA MORIANA

#	Article	IF	CITATIONS
19	Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose, 2015, 22, 3409-3423.	2.4	27
20	A single model-free rate expression describing both non-isothermal and isothermal pyrolysis of Norway Spruce. Fuel, 2015, 161, 59-67.	3.4	24
21	Thermal degradation behavior and kinetic analysis of spruce glucomannan and its methylated derivatives. Carbohydrate Polymers, 2014, 106, 60-70.	5.1	62
22	lsolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate Polymers, 2014, 111, 979-987.	5.1	94
23	The bark biorefinery: a side-stream of the forest industry converted into nanocomposites with high oxygen-barrier properties. Cellulose, 2014, 21, 4583-4594.	2.4	26
24	Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydrate Polymers, 2014, 112, 422-431.	5.1	78
25	Degradation Behaviour of Natural Fibre Reinforced Starch-Based Composites under Different Environmental Conditions. Journal of Renewable Materials, 2014, 2, 145-156.	1.1	5
26	Green composites based on wheat gluten matrix and <i>posidonia oceanica</i> waste fibers as reinforcements. Polymer Composites, 2013, 34, 1663-1669.	2.3	59
27	Antioxidant and antibacterial effects of natural phenolic compounds on green composite materials. Polymer Composites, 2012, 33, 1288-1294.	2.3	12
28	Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 30-40.	3.8	76
29	Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics. Polymer Degradation and Stability, 2010, 95, 2192-2199.	2.7	51
30	Thermal analysis applied to the characterization of degradation in soil of polylactide: I. Calorimetric and viscoelastic analyses. Polymer Degradation and Stability, 2010, 95, 2185-2191.	2.7	50
31	Assessing the influence of cotton fibers on the degradation in soil of a thermoplastic starchâ€based biopolymer. Polymer Composites, 2010, 31, 2102-2111.	2.3	15
32	Thermal characterisation of photoâ€oxidized HDPE/Materâ€Bi and LDPE/Materâ€Bi blends buried in soil. Journal of Applied Polymer Science, 2008, 109, 1177-1188.	1.3	10
33	A Thermogravimetric Approach to Study the Influence of a Biodegradation in Soil Test to a Poly(lactic) Tj ETQq1	. 1 0,7843 0.4	14 rgBT /Ove
34	Thermal characterization of polyethylene blends with a biodegradable masterbatch subjected to thermoâ€oxidative treatment and subsequent soil burial test. Journal of Applied Polymer Science, 2007, 106, 2218-2230.	1.3	18