Saihu Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2515270/publications.pdf

Version: 2024-02-01

61 3,126 27
papers citations h-index

84 84 84 2453
all docs docs citations times ranked citing authors

54

g-index

#	Article	IF	CITATIONS
1	Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brA,nsted acid as the catalyst. Science China Chemistry, 2022, 65, 304-308.	4.2	13
2	Organocatalytic PET-RAFT polymerization with a low ppm of organic photocatalyst under visible light. Polymer Chemistry, 2022, 13, 209-219.	1.9	16
3	Solution [2 + 2] photopolymerization of biomass-derived nonrigid biscinnamate monomers enabled by energy transfer catalysis. Polymer Chemistry, 2022, 13, 2538-2544.	1.9	6
4	Divergent isoindolinone synthesis through palladium-catalyzed isocyanide bridging C–H activation. Cell Reports Physical Science, 2022, 3, 100776.	2.8	9
5	Organocatalytic, Stereoselective, Cationic Reversible Addition–Fragmentation Chain-Transfer Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2022, 144, 679-684.	6.6	28
6	Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polymer Chemistry, 2022, 13, 2776-2781.	1.9	8
7	Visible Light-Regulated Organocatalytic Ring-Opening Polymerization of Lactones Using Hydroxybenzophenones as Photocatalyst. ACS Applied Polymer Materials, 2022, 4, 3361-3368.	2.0	4
8	Electrochemical Synthesis of Î ² -Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Organic Letters, 2022, 24, 3702-3706.	2.4	25
9	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	3.2	20
10	Organocatalytic orthogonal ATRP and ring-opening polymerization using a single dual-function photocatalyst. Polymer Chemistry, 2022, 13, 4284-4289.	1.9	5
11	Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nature Communications, 2022, 13, .	5.8	37
12	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angewandte Chemie, 2021, 133, 4002-4006.	1.6	18
13	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angewandte Chemie - International Edition, 2021, 60, 3956-3960.	7.2	66
14	Recent Advances in Palladium-Catalyzed Bridging C–H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. Synthesis, 2021, 53, 238-254.	1.2	27
15	Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight. Nature Communications, 2021, 12, 429.	5.8	72
16	Visible light-regulated organocatalytic ring-opening polymerization of lactones by harnessing excited state acidity. Polymer Chemistry, 2021, 12, 885-892.	1.9	21
17	Metal-Free Cationic Polymerization of Vinyl Ethers with Strict Temporal Control by Employing an Organophotocatalyst. Journal of the American Chemical Society, 2021, 143, 6357-6362.	6.6	63
18	Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines. Science China Chemistry, 2021, 64, 1756-1762.	4.2	12

#	Article	IF	Citations
19	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloroâ€Fluorosulfonylation of Alkynes. Angewandte Chemie - International Edition, 2021, 60, 22035-22042.	7.2	54
20	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloroâ€Fluorosulfonylation of Alkynes. Angewandte Chemie, 2021, 133, 22206-22213.	1.6	7
21	Electrochemical Oxoâ€Fluorosulfonylation of Alkynes under Air: Facile Access to βâ€Keto Sulfonyl Fluorides. Angewandte Chemie - International Edition, 2021, 60, 27271-27276.	7.2	52
22	Imidodiphosphorimidate (IDPi) as an efficient organocatalyst for controlled/living ring-opening polymerization of lactones. European Polymer Journal, 2020, 123, 109449.	2.6	11
23	Decarboxylative thiolation of redox-active esters to free thiols and further diversification. Nature Communications, 2020, $11,5340$.	5.8	23
24	Metal-free dehydrosulfurization of thioamides to nitriles under visible light. Chemical Communications, 2020, 56, 5151-5153.	2.2	11
25	Accessing alkyl boronic esters <i>via</i> visible light-mediated decarboxylative addition reactions of redox-active esters. Organic Chemistry Frontiers, 2020, 7, 2003-2007.	2.3	16
26	Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. Organic Letters, 2020, 22, 3692-3696.	2.4	41
27	Visible light-mediated ring-opening polymerization of lactones based on the excited state acidity of ESPT molecules. Polymer Chemistry, 2020, 11, 3709-3715.	1.9	15
28	A rapid access to aliphatic sulfonyl fluorides. Nature Communications, 2019, 10, 3752.	5.8	90
29	Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor–Acceptor Complex Formation. Organic Letters, 2019, 21, 8673-8678.	2.4	7 3
30	Copper-Catalyzed Nitrogenation of Aromatic and Aliphatic Aldehydes: A Direct Route to Carbamoyl Azides. Synthesis, 2019, 51, 4645-4649.	1.2	5
31	An efficient and mild route to highly fluorinated polyolefins <i>via</i> copolymerization of ethylene and 5-perfluoroalkylnorbornenes. Polymer Chemistry, 2019, 10, 3604-3609.	1.9	9
32	A Synthesis of Multifunctionalized Indoles from $[3+2]$ Annulation of 2-Bromocyclopropenes with Anilines. Organic Letters, 2019, 21, 4097-4100.	2.4	10
33	BINOLs as visible light photocatalysts for metal-free atom transfer radical polymerization. Polymer Chemistry, 2019, 10, 6662-6668.	1.9	17
34	Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. Organic Chemistry Frontiers, 2018, 5, 2296-2302.	2.3	56
35	Catalytic Enantioselective Conversion of Epoxides to Thiiranes. Journal of the American Chemical Society, 2016, 138, 5230-5233.	6.6	54
36	The Activation of Carboxylic Acids via Self-Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation. Journal of the American Chemical Society, 2016, 138, 14740-14749.	6.6	52

#	Article	IF	CITATIONS
37	Stereochemical Communication within a Chiral Ion Pair Catalyst. Angewandte Chemie - International Edition, 2015, 54, 8841-8845.	7.2	58
38	Asymmetric Annulation of Donor–Acceptor Cyclopropanes with Dienes. Journal of the American Chemical Society, 2015, 137, 8006-8009.	6.6	179
39	Asymmetric 1,2-Perfluoroalkyl Migration: Easy Access to Enantioenriched α-Hydroxy-α-perfluoroalkyl Esters. Journal of the American Chemical Society, 2015, 137, 4626-4629.	6.6	42
40	Double \hat{I}^3 -alkylation of allylic phosphorus ylides: a unique access to oxa-bicyclic[3.3.0] diene skeletons. Chemical Communications, 2014, 50, 808-810.	2.2	9
41	A sidearm-assisted phosphine for catalytic ylide intramolecular cyclopropanation. Organic Chemistry Frontiers, 2014, 1, 1035-1039.	2.3	19
42	Side Arm Strategy for Catalyst Design: Modifying Bisoxazolines for Remote Control of Enantioselection and Related. Accounts of Chemical Research, 2014, 47, 2260-2272.	7.6	213
43	Iron-Catalyzed Three-Component Reaction: Multiple C–C Bond Cleavages and Reorganizations. Organic Letters, 2013, 15, 3606-3609.	2.4	11
44	Reaction of trisubstituted alkenes with iron porphyrin carbenes: facile synthesis of tetrasubstituted dienes and cyclopentadienes. Chemical Communications, 2013, 49, 7436.	2.2	22
45	A Highly Efficient and Enantioselective Intramolecular Cannizzaro Reaction under TOX/Cu(II) Catalysis. Journal of the American Chemical Society, 2013, 135, 16849-16852.	6.6	89
46	Highly Enantioselective [3+3] Cycloaddition of Aromatic Azomethine Imines with Cyclopropanes Directed by π–π Stacking Interactions. Angewandte Chemie - International Edition, 2013, 52, 1452-1456.	7.2	170
47	Highly Enantioselective [3+2] Annulation of Cyclic Enol Silyl Ethers with Donor–Acceptor Cyclopropanes: Accessing <i>3a< i>â€Hydroxy [<i>n</i>.3.0]Carbobicycles. Angewandte Chemie - International Edition, 2013, 52, 4004-4007.</i>	7.2	130
48	Copper-Catalyzed Highly Enantioselective Cyclopentannulation of Indoles with Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society, 2013, 135, 7851-7854.	6.6	330
49	Ylide Hydrolysis in Tandem Reactions: A Highly <i>Z</i> /i>/ <i>E</i> Selective Access to 3-Alkylidene Dihydrobenzofurans and Related Analogues. Organic Letters, 2013, 15, 3054-3057.	2.4	23
50	PPh3-mediated intramolecular conjugation of alkyl halides with electron-deficient olefins: facile synthesis of chromans and relevant analogues. Chemical Communications, 2013, 49, 4570.	2.2	15
51	Reactions of Iron Carbenes with α,βâ€Unsaturated Esters by Using an Umpolung Approach: Mechanism and Applications. Chemistry - A European Journal, 2013, 19, 6766-6773.	1.7	18
52	Facile and controllable synthesis of multiply substituted benzenes via a formal [3+3] cycloaddition approach. Tetrahedron, 2013, 69, 284-292.	1.0	20
53	Activation of H ₂ O ₂ by Chiral Confined Brønsted Acids: A Highly Enantioselective Catalytic Sulfoxidation. Journal of the American Chemical Society, 2012, 134, 10765-10768.	6.6	203
54	Asymmetric Counteranionâ€Directed Iron Catalysis: A Highly Enantioselective Sulfoxidation. Advanced Synthesis and Catalysis, 2012, 354, 2363-2367.	2.1	51

Saihu Liao

#	Article	IF	CITATIONS
55	Highly Diastereo―and Enantioselective Cyclopropanation of 1,2â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2012, 51, 8838-8841.	7.2	77
56	Tris(oxazoline)/copper-catalyzed coupling of alkynes with nitrones: a highly enantioselective access to \hat{l}^2 -lactams. Tetrahedron, 2012, 68, 5042-5045.	1.0	38
57	Asymmetric Counteranionâ€Directed Transitionâ€Metal Catalysis: Enantioselective Epoxidation of Alkenes with Manganese(III) Salen Phosphate Complexes. Angewandte Chemie - International Edition, 2010, 49, 628-631.	7. 2	180
58	Pyrrolidine as an efficient organocatalyst for direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. Tetrahedron, 2007, 63, 4636-4641.	1.0	19
59	Electrochemical Oxoâ€Fluorosulfonylation of Alkynes under Air:ÂFacile Access to βâ€Keto Sulfonyl Fluorides. Angewandte Chemie, 0, , .	1.6	38
60	Radical Fluorosulfonylation: Accessing Alkenylsulfonyl Fluorides from Alkenes and Alkynes. Synlett, 0, , .	1.0	5
61	Acetalization of enol ethers with alcohols under visible light with BINOLs as a photoacid catalyst. Synlett, 0, 33, .	1.0	0