List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2515270/publications.pdf Version: 2024-02-01

SALULUAO

#	Article	IF	CITATIONS
1	Copper-Catalyzed Highly Enantioselective Cyclopentannulation of Indoles with Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society, 2013, 135, 7851-7854.	6.6	330
2	Side Arm Strategy for Catalyst Design: Modifying Bisoxazolines for Remote Control of Enantioselection and Related. Accounts of Chemical Research, 2014, 47, 2260-2272.	7.6	213
3	Activation of H ₂ O ₂ by Chiral Confined BrÃ,nsted Acids: A Highly Enantioselective Catalytic Sulfoxidation. Journal of the American Chemical Society, 2012, 134, 10765-10768.	6.6	203
4	Asymmetric Counteranionâ€Directed Transitionâ€Metal Catalysis: Enantioselective Epoxidation of Alkenes with Manganese(III) Salen Phosphate Complexes. Angewandte Chemie - International Edition, 2010, 49, 628-631.	7.2	180
5	Asymmetric Annulation of Donor–Acceptor Cyclopropanes with Dienes. Journal of the American Chemical Society, 2015, 137, 8006-8009.	6.6	179
6	Highly Enantioselective [3+3] Cycloaddition of Aromatic Azomethine Imines with Cyclopropanes Directed by π–π Stacking Interactions. Angewandte Chemie - International Edition, 2013, 52, 1452-1456.	7.2	170
7	Highly Enantioselective [3+2] Annulation of Cyclic Enol Silyl Ethers with Donor–Acceptor Cyclopropanes: Accessing <i>3a</i> â€Hydroxy [<i>n</i> .3.0]Carbobicycles. Angewandte Chemie - International Edition, 2013, 52, 4004-4007.	7.2	130
8	A rapid access to aliphatic sulfonyl fluorides. Nature Communications, 2019, 10, 3752.	5.8	90
9	A Highly Efficient and Enantioselective Intramolecular Cannizzaro Reaction under TOX/Cu(II) Catalysis. Journal of the American Chemical Society, 2013, 135, 16849-16852.	6.6	89
10	Highly Diastereo―and Enantioselective Cyclopropanation of 1,2â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2012, 51, 8838-8841.	7.2	77
11	Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor–Acceptor Complex Formation. Organic Letters, 2019, 21, 8673-8678.	2.4	73
12	Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight. Nature Communications, 2021, 12, 429.	5.8	72
13	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angewandte Chemie - International Edition, 2021, 60, 3956-3960.	7.2	66
14	Metal-Free Cationic Polymerization of Vinyl Ethers with Strict Temporal Control by Employing an Organophotocatalyst. Journal of the American Chemical Society, 2021, 143, 6357-6362.	6.6	63
15	Stereochemical Communication within a Chiral Ion Pair Catalyst. Angewandte Chemie - International Edition, 2015, 54, 8841-8845.	7.2	58
16	Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. Organic Chemistry Frontiers, 2018, 5, 2296-2302.	2.3	56
17	Catalytic Enantioselective Conversion of Epoxides to Thiiranes. Journal of the American Chemical Society, 2016, 138, 5230-5233.	6.6	54
18	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloroâ€Fluorosulfonylation of Alkynes. Angewandte Chemie - International Edition, 2021, 60, 22035-22042.	7.2	54

#	Article	IF	CITATIONS
19	The Activation of Carboxylic Acids via Self-Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation. Journal of the American Chemical Society, 2016, 138, 14740-14749.	6.6	52
20	Electrochemical Oxoâ€Fluorosulfonylation of Alkynes under Air: Facile Access to βâ€Keto Sulfonyl Fluorides. Angewandte Chemie - International Edition, 2021, 60, 27271-27276.	7.2	52
21	Asymmetric Counteranionâ€Directed Iron Catalysis: A Highly Enantioselective Sulfoxidation. Advanced Synthesis and Catalysis, 2012, 354, 2363-2367.	2.1	51
22	Asymmetric 1,2-Perfluoroalkyl Migration: Easy Access to Enantioenriched α-Hydroxy-α-perfluoroalkyl Esters. Journal of the American Chemical Society, 2015, 137, 4626-4629.	6.6	42
23	Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. Organic Letters, 2020, 22, 3692-3696.	2.4	41
24	Tris(oxazoline)/copper-catalyzed coupling of alkynes with nitrones: a highly enantioselective access to β-lactams. Tetrahedron, 2012, 68, 5042-5045.	1.0	38
25	Electrochemical Oxoâ€Fluorosulfonylation of Alkynes under Air:ÂFacile Access to βâ€Keto Sulfonyl Fluorides. Angewandte Chemie, 0, , .	1.6	38
26	Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nature Communications, 2022, 13, .	5.8	37
27	Organocatalytic, Stereoselective, Cationic Reversible Addition–Fragmentation Chain-Transfer Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2022, 144, 679-684.	6.6	28
28	Recent Advances in Palladium-Catalyzed Bridging C–H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. Synthesis, 2021, 53, 238-254.	1.2	27
29	Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Organic Letters, 2022, 24, 3702-3706.	2.4	25
30	Ylide Hydrolysis in Tandem Reactions: A Highly <i>Z</i> / <i>E</i> -Selective Access to 3-Alkylidene Dihydrobenzofurans and Related Analogues. Organic Letters, 2013, 15, 3054-3057.	2.4	23
31	Decarboxylative thiolation of redox-active esters to free thiols and further diversification. Nature Communications, 2020, 11, 5340.	5.8	23
32	Reaction of trisubstituted alkenes with iron porphyrin carbenes: facile synthesis of tetrasubstituted dienes and cyclopentadienes. Chemical Communications, 2013, 49, 7436.	2.2	22
33	Visible light-regulated organocatalytic ring-opening polymerization of lactones by harnessing excited state acidity. Polymer Chemistry, 2021, 12, 885-892.	1.9	21
34	Facile and controllable synthesis of multiply substituted benzenes via a formal [3+3] cycloaddition approach. Tetrahedron, 2013, 69, 284-292.	1.0	20
35	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	3.2	20
36	Pyrrolidine as an efficient organocatalyst for direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. Tetrahedron, 2007, 63, 4636-4641.	1.0	19

#	Article	IF	CITATIONS
37	A sidearm-assisted phosphine for catalytic ylide intramolecular cyclopropanation. Organic Chemistry Frontiers, 2014, 1, 1035-1039.	2.3	19
38	Reactions of Iron Carbenes with α,βâ€Unsaturated Esters by Using an Umpolung Approach: Mechanism and Applications. Chemistry - A European Journal, 2013, 19, 6766-6773.	1.7	18
39	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angewandte Chemie, 2021, 133, 4002-4006.	1.6	18
40	BINOLs as visible light photocatalysts for metal-free atom transfer radical polymerization. Polymer Chemistry, 2019, 10, 6662-6668.	1.9	17
41	Accessing alkyl boronic esters <i>via</i> visible light-mediated decarboxylative addition reactions of redox-active esters. Organic Chemistry Frontiers, 2020, 7, 2003-2007.	2.3	16
42	Organocatalytic PET-RAFT polymerization with a low ppm of organic photocatalyst under visible light. Polymer Chemistry, 2022, 13, 209-219.	1.9	16
43	PPh3-mediated intramolecular conjugation of alkyl halides with electron-deficient olefins: facile synthesis of chromans and relevant analogues. Chemical Communications, 2013, 49, 4570.	2.2	15
44	Visible light-mediated ring-opening polymerization of lactones based on the excited state acidity of ESPT molecules. Polymer Chemistry, 2020, 11, 3709-3715.	1.9	15
45	Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brA,nsted acid as the catalyst. Science China Chemistry, 2022, 65, 304-308.	4.2	13
46	Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines. Science China Chemistry, 2021, 64, 1756-1762.	4.2	12
47	Iron-Catalyzed Three-Component Reaction: Multiple C–C Bond Cleavages and Reorganizations. Organic Letters, 2013, 15, 3606-3609.	2.4	11
48	Imidodiphosphorimidate (IDPi) as an efficient organocatalyst for controlled/living ring-opening polymerization of lactones. European Polymer Journal, 2020, 123, 109449.	2.6	11
49	Metal-free dehydrosulfurization of thioamides to nitriles under visible light. Chemical Communications, 2020, 56, 5151-5153.	2.2	11
50	A Synthesis of Multifunctionalized Indoles from [3 + 2] Annulation of 2-Bromocyclopropenes with Anilines. Organic Letters, 2019, 21, 4097-4100.	2.4	10
51	Double Î ³ -alkylation of allylic phosphorus ylides: a unique access to oxa-bicyclic[3.3.0] diene skeletons. Chemical Communications, 2014, 50, 808-810.	2.2	9
52	An efficient and mild route to highly fluorinated polyolefins <i>via</i> copolymerization of ethylene and 5-perfluoroalkylnorbornenes. Polymer Chemistry, 2019, 10, 3604-3609.	1.9	9
53	Divergent isoindolinone synthesis through palladium-catalyzed isocyanide bridging C–H activation. Cell Reports Physical Science, 2022, 3, 100776.	2.8	9
54	Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polymer Chemistry, 2022, 13, 2776-2781.	1.9	8

#	Article	IF	CITATIONS
55	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloroâ€Fluorosulfonylation of Alkynes. Angewandte Chemie, 2021, 133, 22206-22213.	1.6	7
56	Solution [2 + 2] photopolymerization of biomass-derived nonrigid biscinnamate monomers enabled by energy transfer catalysis. Polymer Chemistry, 2022, 13, 2538-2544.	1.9	6
57	Copper-Catalyzed Nitrogenation of Aromatic and Aliphatic Aldehydes: A Direct Route to Carbamoyl Azides. Synthesis, 2019, 51, 4645-4649.	1.2	5
58	Radical Fluorosulfonylation: Accessing Alkenylsulfonyl Fluorides from Alkenes and Alkynes. Synlett, O, , .	1.0	5
59	Organocatalytic orthogonal ATRP and ring-opening polymerization using a single dual-function photocatalyst. Polymer Chemistry, 2022, 13, 4284-4289.	1.9	5
60	Visible Light-Regulated Organocatalytic Ring-Opening Polymerization of Lactones Using Hydroxybenzophenones as Photocatalyst. ACS Applied Polymer Materials, 2022, 4, 3361-3368.	2.0	4
61	Acetalization of enol ethers with alcohols under visible light with BINOLs as a photoacid catalyst. Synlett, 0, 33, .	1.0	Ο