Saihu Liao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2515270/saihu-liao-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54	2,169	23	46
papers	citations	h-index	g-index
84 ext. papers	2,698 ext. citations	8.8 avg, IF	5.32 L-index

#	Paper	IF	Citations
54	Organocatalytic PET-RAFT polymerization with a low ppm of organic photocatalyst under visible light. <i>Polymer Chemistry</i> , 2022 , 13, 209-219	4.9	5
53	Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brlisted acid as the catalyst. <i>Science China Chemistry</i> , 2022 , 65, 304	7.9	3
52	Divergent isoindolinone synthesis through palladium-catalyzed isocyanide bridging CH activation. <i>Cell Reports Physical Science</i> , 2022 , 3, 100776	6.1	3
51	Visible Light-Regulated Organocatalytic Ring-Opening Polymerization of Lactones Using Hydroxybenzophenones as Photocatalyst. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 3361-3368	4.3	
50	Metal-Free Cationic Polymerization of Vinyl Ethers with Strict Temporal Control by Employing an Organophotocatalyst. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6357-6362	16.4	23
49	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. <i>Angewandte Chemie</i> , 2021 , 133, 4002-4006	3.6	4
48	Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3956-3960	16.4	25
47	Recent Advances in Palladium-Catalyzed Bridging CH Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. <i>Synthesis</i> , 2021 , 53, 238-254	2.9	15
46	Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight. <i>Nature Communications</i> , 2021 , 12, 429	17.4	23
45	Visible light-regulated organocatalytic ring-opening polymerization of lactones by harnessing excited state acidity. <i>Polymer Chemistry</i> , 2021 , 12, 885-892	4.9	5
44	Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines. <i>Science China Chemistry</i> , 2021 , 64, 1756	7.9	3
43	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22035-22042	16.4	11
42	Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. <i>Angewandte Chemie</i> , 2021 , 133, 22206-22213	3.6	O
41	Organocatalytic, Stereoselective, Cationic Reversible Addition-Fragmentation Chain-Transfer Polymerization of Vinyl Ethers <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	4
40	Metal-free dehydrosulfurization of thioamides to nitriles under visible light. <i>Chemical Communications</i> , 2020 , 56, 5151-5153	5.8	6
39	Accessing alkyl boronic esters via visible light-mediated decarboxylative addition reactions of redox-active esters. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 2003-2007	5.2	8
38	Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. <i>Organic Letters</i> , 2020 , 22, 3692-3696	6.2	16

(2014-2020)

37	Visible light-mediated ring-opening polymerization of lactones based on the excited state acidity of ESPT molecules. <i>Polymer Chemistry</i> , 2020 , 11, 3709-3715	4.9	6
36	Imidodiphosphorimidate (IDPi) as an efficient organocatalyst for controlled/living ring-opening polymerization of lactones. <i>European Polymer Journal</i> , 2020 , 123, 109449	5.2	7
35	Decarboxylative thiolation of redox-active esters to free thiols and further diversification. <i>Nature Communications</i> , 2020 , 11, 5340	17.4	9
34	Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor-Acceptor Complex Formation. <i>Organic Letters</i> , 2019 , 21, 8673-8678	6.2	48
33	Copper-Catalyzed Nitrogenation of Aromatic and Aliphatic Aldehydes: A Direct Route to Carbamoyl Azides. <i>Synthesis</i> , 2019 , 51, 4645-4649	2.9	1
32	An efficient and mild route to highly fluorinated polyolefins via copolymerization of ethylene and 5-perfluoroalkylnorbornenes. <i>Polymer Chemistry</i> , 2019 , 10, 3604-3609	4.9	7
31	A Synthesis of Multifunctionalized Indoles from [3 + 2] Annulation of 2-Bromocyclopropenes with Anilines. <i>Organic Letters</i> , 2019 , 21, 4097-4100	6.2	7
30	A rapid access to aliphatic sulfonyl fluorides. <i>Nature Communications</i> , 2019 , 10, 3752	17.4	40
29	BINOLs as visible light photocatalysts for metal-free atom transfer radical polymerization. <i>Polymer Chemistry</i> , 2019 , 10, 6662-6668	4.9	9
28	Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 2296-2302	5.2	40
27	The Activation of Carboxylic Acids via Self-Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14	1746:44	1749
26	Catalytic Enantioselective Conversion of Epoxides to Thiiranes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5230-3	16.4	35
25	Asymmetric Annulation of Donor-Acceptor Cyclopropanes with Dienes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8006-9	16.4	160
24	Asymmetric 1,2-perfluoroalkyl migration: easy access to enantioenriched hydroxy-perfluoroalkyl esters. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4626-9	16.4	33
23	Stereochemical Communication within a Chiral Ion Pair Catalyst. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8841-5	16.4	42
22	Stereochemische Kommunikation innerhalb eines chiralen Ionenpaares. <i>Angewandte Chemie</i> , 2015 , 127, 8967-8971	3.6	12
21	Double Elkylation of allylic phosphorus ylides: a unique access to oxa-bicyclic[3.3.0] diene skeletons. <i>Chemical Communications</i> , 2014 , 50, 808-10	5.8	8
20	A sidearm-assisted phosphine for catalytic ylide intramolecular cyclopropanation. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 1035-1039	5.2	16

19	Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related. <i>Accounts of Chemical Research</i> , 2014 , 47, 2260-72	24.3	162
18	Iron-catalyzed three-component reaction: multiple C-C bond cleavages and reorganizations. <i>Organic Letters</i> , 2013 , 15, 3606-9	6.2	10
17	Reaction of trisubstituted alkenes with iron porphyrin carbenes: facile synthesis of tetrasubstituted dienes and cyclopentadienes. <i>Chemical Communications</i> , 2013 , 49, 7436-8	5.8	20
16	A highly efficient and enantioselective intramolecular Cannizzaro reaction under TOX/Cu(II) catalysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16849-52	16.4	71
15	Highly enantioselective [3+3] cycloaddition of aromatic azomethine imines with cyclopropanes directed by Estacking interactions. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1452-6	16.4	157
14	Highly enantioselective [3+2] annulation of cyclic enol silyl ethers with donor-acceptor cyclopropanes: accessing 3a-hydroxy [n.3.0]carbobicycles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4004-7	16.4	117
13	Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor-acceptor cyclopropanes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7851-4	16.4	296
12	Ylide hydrolysis in tandem reactions: a highly Z/E-selective access to 3-alkylidene dihydrobenzofurans and related analogues. <i>Organic Letters</i> , 2013 , 15, 3054-7	6.2	19
11	PPh3-mediated intramolecular conjugation of alkyl halides with electron-deficient olefins: facile synthesis of chromans and relevant analogues. <i>Chemical Communications</i> , 2013 , 49, 4570-2	5.8	12
10	Reactions of iron carbenes with #Linsaturated esters by using an Umpolung approach: mechanism and applications. <i>Chemistry - A European Journal</i> , 2013 , 19, 6766-73	4.8	18
9	Facile and controllable synthesis of multiply substituted benzenes via a formal [3+3] cycloaddition approach. <i>Tetrahedron</i> , 2013 , 69, 284-292	2.4	19
8	Highly Enantioselective [3+2] Annulation of Cyclic Enol Silyl Ethers with Donor Acceptor Cyclopropanes: Accessing 3a-Hydroxy [n.3.0] Carbobicycles. <i>Angewandte Chemie</i> , 2013 , 125, 4096-4099	3.6	46
7	Tris(oxazoline)/copper-catalyzed coupling of alkynes with nitrones: a highly enantioselective access to 🛘 actams. <i>Tetrahedron</i> , 2012 , 68, 5042-5045	2.4	34
6	Activation of H2O2 by chiral confined Brīlsted acids: a highly enantioselective catalytic sulfoxidation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10765-8	16.4	164
5	Asymmetric Counteranion-Directed Iron Catalysis: A Highly Enantioselective Sulfoxidation. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2363-2367	5.6	45
4	Highly diastereo- and enantioselective cyclopropanation of 1,2-disubstituted alkenes. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8838-41	16.4	67
3	Asymmetrische Gegenanion-vermittelte Bergangsmetallkatalyse: enantioselektive Epoxidierung von Alkenen mit Mangan(III)-Salen-Phosphatkomplexen. <i>Angewandte Chemie</i> , 2010 , 122, 638-641	3.6	50
2	Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese(III) salen phosphate complexes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 628-31	16.4	153

LIST OF PUBLICATIONS

Pyrrolidine as an efficient organocatalyst for direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. *Tetrahedron*, **2007**, 63, 4636-4641

2.4 17