Oleg A Kozaderov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2514335/publications.pdf

Version: 2024-02-01

1684188 1474206 33 102 5 9 citations g-index h-index papers 33 33 33 74 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Anticoagulant Activity of New Ethylidene and Spiro Derivatives of Pyrrolo[3,2,1-ij]quinolin-2-ones. Russian Journal of Organic Chemistry, 2020, 56, 1550-1556.	0.8	14
2	Approaches for Modifying Oxide-Semiconductor Materials to Increase the Efficiency of Photocatalytic Water Splitting. Materials, 2022, 15, 4915.	2.9	12
3	Corrosion of α-Brass in Solutions Containing Chloride Ions and 3-Mercaptoalkyl-5-amino-1H-1,2,4-triazoles. Applied Sciences (Switzerland), 2019, 9, 2821.	2.5	9
4	Effect of Cr(III) passivation layer on surface modifications of zinc-nickel coatings in chloride solutions. Journal of Solid State Electrochemistry, 2021, 25, 1161-1173.	2.5	9
5	Diffusion Problem in Chronopotentio- and Chronoamperometry for Electrode with Rough Surface. Russian Journal of Electrochemistry, 2001, 37, 798-802.	0.9	7
6	Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review. Sensors, 2022, 22, 3421.	3.8	6
7	3-Sulphinyl-5-Amino-1H-1,2,4-Triazoles as Inhibitors of Copper Corrosion. Applied Sciences (Switzerland), 2019, 9, 4882.	2.5	5
8	A DFT study on optical, electronic, and charge transport properties of starâ€shaped benzo[1,2â€b:3,4â€b′:5,6â€b″]trithiophene oligomers. Journal of Physical Organic Chemistry, 2020, 33, e40)3 ¹ .9	5
9	Zinc-nickel alloy coatings: electrodeposition kinetics, corrosion, and selective dissolution. A review. Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, 3-15.	0.3	5
10	Efficient synthesis of (5-oxo-6,7-dihydro-4H-[1,2,4]triazolo-[1,5-a]pyrimidin-6-yl)acetanilides based on the recyclization of N-arylitaconimides with 3-amino[1,2,4]triazoles. Russian Chemical Bulletin, 2021, 70, 520-526.	1.5	4
11	Solid-Phase Diffusion at a Potentiostatic Dissolution of Silver Alloyed with Gold. Protection of Metals, 2005, 41, 329-340.	0.2	3
12	Kinetics of phase transformations in the surface layer of a binary alloy at the selective dissolution: III. Cu-Au Cu2+ system. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 661-668.	1.1	3
13	Synthesis of new pyrido[4,3-e][1,2,4]triazolo-[5,1-c][1,2,4]triazin-6(7H)-ones. Chemistry of Heterocyclic Compounds, 2020, 56, 1348-1352.	1.2	3
14	Chronoammetry and Chronopotentiometry on Electrodes with a Microrough Surface: Theoretical Consideration. Protection of Metals, 2005, 41, 211-220.	0.2	2
15	Kinetics of phase transformations in a binary alloy surface layer at the selective dissolution. I. Theoretical analysis. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 31-35.	1.1	2
16	Separation of transient partial fluxes of nucleation/growth of a new phase and electrode reaction by the chronoamperometry method. Surface and Interface Analysis, 2010, 42, 629-635.	1.8	2
17	Kinetics of phase transformations in the surface layer of a binary alloy upon selective dissolution. IV. Ag-Pd Ag+ system. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 411-418.	1.1	2
18	Electrodeposition of Zinc–Nickel Coatings from Glycine-Containing Ammonium-Chloride Electrolyte. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 552-559.	1.1	2

#	Article	IF	CITATIONS
19	Corrosion behavior of low carbon steel in technological aqueous calcium nitrate solutions. International Journal of Corrosion and Scale Inhibition, 2015, 4, 221-225.	0.6	2
20	Solid-Phase Diffusion at a Galvanostatic Anodic Dissolution of Zn-Ag and Cu-Au Alloy. Protection of Metals, 2005, 41, 449-459.	0.2	1
21	Critical potential of the surface development of Ag-Au alloys. Protection of Metals, 2008, 44, 22-31.	0.2	1
22	Kinetics of phase transformations in a binary alloy surface layer at the selective dissolution. II. Ag-Au Ag+* system. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 277-282.	1.1	1
23	Inhibition of Copper Corrosion with N-Arylaminotriazoles in Aqueous Chloride Solutions and in Air. Russian Journal of Applied Chemistry, 2020, 93, 1152-1159.	0.5	1
24	Anodic formation and properties of nanoscale oxide layers on silver–zinc alloys with different concentrations of non-equilibrium vacancies. Journal of Solid State Electrochemistry, 2022, 26, 1637-1644.	2.5	1
25	Chronovoltammetry of the anodic dissolution of Ag-Au alloys in nitrate environments. Protection of Metals, 2008, 44, 333-342.	0.2	O
26	Voltamperometry of selective dissolution of Ag-Au alloys under conditions of solid phase-liquid phase mass transfer. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 724-733.	1.1	0
27	Copper corrosion inhibition in chloride environments by 3-(N-hetaryl)-5-amino-1H-1,2,4-triazoles. International Journal of Corrosion and Scale Inhibition, 2019, 8, .	0.6	0
28	ĐĐ»ĐμаÑ,Ñ€Đ¾ÑĐ¸Đ¼Đ¸Ñ‡ĐµÑĐ°Đ¾Đμ Đ¾Đ°Đ¸ÑĐ»ĐμĐ½Đ¸Đµ Đ¼ÑƒÑ€Đ°Đ²ÑŒĐ¸Đ½Đ¾Đ¹ аиÑĐ»Đ)³ ⁄oÑ ġÑ‹Đ ^ː	½ ₯ ° пой
29	Đ'Đ¾Đ»ÑŒÑ,Đ°Đ¼Đ¿ĐμÑ€Đ¾Đ¼ĐμÑ,Ñ€Đ¸Ñ•Đ°Đ¸Đ½ĐμÑ,Đ¸Ñ‡ĐμÑаи Đ½ĐμĐ¾Đ±Ñ€Đ°Ñ,Đ¸Đ¼Đ¾Đ3Đ3	4 ÑΦ »Đμ€)ºÑŋÑ€Đ¾Ñ
30	ĐšĐ,Đ½ĐμÑ,Đ,аа Ñ,,аĐ∙Đ¾Đ²Ñ‹Ñ Đ¿Ñ€ĐμĐ²Ñ€Đ°Ñ‰ĐμĐ½Đ,Đ¹ Đ¿Ñ€Đ¸ ÑĐμĐ»ĐμаÑ,Đ,Đ²Đ½Đ¾Đ¼	Ñ GD °ÑÑ,	Đ 2Φ 3⁄4Ñ€ĐμĐ
31	КаÑ,Đ¾ĐĐ½Đ¾Đμ Đ¾ÑĐ°Đ¶ĐΌμĐ½Đ¸Đμ Ñ†Đ¸Đ½Đ°-Đ½Đ¸ĐºĐμĐ»ĐμĐ²Ñ‹Ñ Đ¿Đ¾Đ°Ñ€Ñ‹Ñ,Đ¸Đ¹ из	Ð ‰® ,Ð∙Ð	ºĐ ∂ ∕4ĐºĐ3∕4 <mark>Đ</mark> 1
32	ĐšĐ²Đ°Đ½Ñ,Đ¾Đ²Đ¾-Ñ…Đ,Đ¼Đ,Ñ‡ĐµÑĐ°Đ¾Đµ Đ¼Đ¾Đ ĐµĐ»Đ,Ñ€Đ¾Đ²Đ°Đ½Đ,е ÑĐ½ĐѢ¾Ñ"ÑƒĐ»€	վԺ∋ ∛ելԺ «C	Ð∳⁄2ов Ð
33	Pd–Pb nanoscale films as surface modifiers of Pd,Cu alloy membranes used for hydrogen ultrapurification. Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, 561-569.	0.3	0