
Guang-Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2514088/publications.pdf Version: 2024-02-01

CHANC-TONC

#	Article	IF	CITATIONS
1	High-efficiency and low-cost permanent magnet guideway consideration for high- <i>T</i> _c superconducting Maglev vehicle practical application. Superconductor Science and Technology, 2008, 21, 115018.	1.8	74
2	Laboratory-Scale High Temperature Superconducting Maglev Launch System. IEEE Transactions on Applied Superconductivity, 2007, 17, 2091-2094.	1.1	44
3	Potentials of an Integrated Levitation, Guidance, and Propulsion System by a Superconducting Transverse Flux Linear Motor. IEEE Transactions on Industrial Electronics, 2018, 65, 7548-7557.	5.2	41
4	3-D Modeling of High-\$T_{c}\$ Superconductor for Magnetic Levitation/Suspension Application—Part I: Introduction to the Method. IEEE Transactions on Applied Superconductivity, 2010, 20, 2219-2227.	1.1	38
5	Semianalytical Calculation of Superconducting Electrodynamic Suspension Train Using Figure-Eight-Shaped Ground Coil. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-9.	1.1	38
6	Coupled Magnetic Field-Thermal Network Analysis of Modular-Spoke-Type Permanent-Magnet Machine for Electric Motorcycle. IEEE Transactions on Energy Conversion, 2021, 36, 120-130.	3.7	32
7	Electromagnetic Investigation of a High-Temperature Superconducting Linear Synchronous Motor for High-Speed Railway. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	31
8	Calculation and Optimization of Propulsion Force of a Real-Scale REBCO Magnet for EDS Train. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.1	29
9	A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system. Superconductor Science and Technology, 2010, 23, 105015.	1.8	28
10	3-D FEM Modeling of the Superconducting EDS Train With Cross-Connected Figure-Eight-Shaped Suspension Coils. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-13.	1.1	24
11	Considerations on the Finite-Element Simulation of High-Temperature Superconductors for Magnetic Levitation Purposes. IEEE Transactions on Applied Superconductivity, 2013, 23, 3601609-3601609.	1.1	21
12	Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet. Physica C: Superconductivity and Its Applications, 2012, 474, 5-12.	0.6	19
13	A Contactless Self-Regulating HTS Flux Pump. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.1	18
14	A 3-D Strong-Coupled Electromagnetic-Thermal Model for HTS Bulk and Its Uses to Study the Dynamic Characteristics of a Linear HTS Maglev Bearing. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-14.	1.1	17
15	Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 117-121.	1.7	16
16	Operation of a Seven-Level T-Type Active Neutral-Point-Clamped Converter With Modified Level-Shifted PWM. IEEE Transactions on Industrial Electronics, 2021, 68, 10970-10981.	5.2	15
17	Performance Investigation of Contactless Self-Regulating HTS Flux Pump. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	14
18	Levitation Force for Evaluation of the High Temperature Superconducting Maglev Vehicle Under Derailment. IEEE Transactions on Applied Superconductivity, 2012, 22, 3600304-3600304.	1.1	13

GUANG-TONG

#	Article	IF	CITATIONS
19	Numerical Studies of Axial and Radial Magnetic Forces Between High Temperature Superconductors and a Magnetic Rotor. Journal of Low Temperature Physics, 2013, 172, 299-309.	0.6	13
20	Experimental Studies of Current Decay in a Flux Pumped HTS Magnet Subject to Travelling Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	12
21	Wireless Power Supply for HTS Magnets: Circuit Topology Design and Cryogenic Testing. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	12
22	Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations. Superconductor Science and Technology, 2013, 26, 105001.	1.8	11
23	The Establishment of an Analytical Model for Coreless HTS Linear Synchronous Motor With a Generalized Racetrack Coil as the Secondary. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	11
24	Effect of AC Magnetic Field on the Levitation Force ofÂYBCO Bulk above NdFeB Guideway. Journal of Low Temperature Physics, 2009, 155, 169-176.	0.6	10
25	Numerical Prediction of Levitation Properties of HTS Bulk in High Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	10
26	Characteristic study of high-Tc superconducting maglev under side-loading. Physica C: Superconductivity and Its Applications, 2009, 469, 188-191.	0.6	9
27	Levitation Force Transition of High-Tc Superconducting Bulks in Varying External Magnetic Field. IEEE Transactions on Applied Superconductivity, 2010, 20, 920-923.	1.1	9
28	Recent Developments of the High Temperature Superconducting Maglev at ASCLab. IEEE Transactions on Applied Superconductivity, 2011, 21, 1551-1555.	1.1	9
29	Frequency-Dependent Transport AC Losses of Coated Superconductors Up To Tens of Kilohertz. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	9
30	Performance Optimization and Verification of the Transformer-Rectifier Flux Pump for HTS Magnet Charging. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	9
31	An Improved Self-Consistent Model and Its Application to Estimate the Critical Current of REBCO Magnet. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.1	9
32	A novel propulsion method for high-Tc superconducting maglev vehicle. Physica C: Superconductivity and Its Applications, 2008, 468, 7-11.	0.6	8
33	Numerical Investigation of the Lateral Movement Influence on the Levitation Force of the Bulk HTS Based on a 3-D Model. IEEE Transactions on Applied Superconductivity, 2010, 20, 924-928.	1.1	8
34	Influence of Auxiliary Permanent Magnet on the High-\$T_{m c}\$ Superconductive Hybrid Maglev System. IEEE Transactions on Applied Superconductivity, 2010, 20, 915-919.	1.1	8
35	Induced Currents in Close-Ended Type-II Superconducting Coils. IEEE Transactions on Applied Superconductivity, 2013, 23, 86-89.	1.1	7
36	Dynamic Response of a Superconducting EDS Train With Vehicle/Guideway Coupled Dynamics. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	7

GUANG-TONG

#	Article	IF	CITATIONS
37	Basic design and characteristics study of a double-axial superconducting magnetic bearing system. Cryogenics, 2009, 49, 259-262.	0.9	6
38	A Method to Increase the Lateral Reversible Region ofÂBulk YBCO Above a Permanent Magnet Guideway. Journal of Low Temperature Physics, 2010, 158, 922-933.	0.6	6
39	The Effect of Running Speed and Guideway Irregularity on the Levitation Performance of a Linear HTS Maglev Bearing. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.1	6
40	Lateral restorable characteristics of the high-Tc superconducting maglev vehicle above the permanent magnet guideway. Physica C: Superconductivity and Its Applications, 2009, 469, 1954-1957.	0.6	5
41	Levitation performance of the magnetized bulk high-Tc superconducting magnet with different trapped fields. Physica C: Superconductivity and Its Applications, 2011, 471, 156-162.	0.6	5
42	Design Optimization of a Heavy-Load High-Temperature Superconducting Maglev System With Multiseeded YBaCuO Bulks. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-8.	1.1	5
43	Dynamic Simulation of Vibration Characteristics and Ride Quality of Superconducting EDS Train Considering Body with Flexibility. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	5
44	Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway. Journal of Low Temperature Physics, 2011, 163, 78-85.	0.6	4
45	Remagnetization effects due to lateral displacement above a PMG on bulk HTS magnet. Cryogenics, 2012, 52, 793-799.	0.9	4
46	Comparison of Linear Superconducting Magnetic Bearings Using Isotropic and Anisotropic Materials. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	4
47	Open-Switch Fault-Tolerant Operation of T-Type Active Neutral-Point-Clamped Converter Using Level-Shifted PWM. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2598-2602.	2.2	4
48	Hysteretic ac loss of a superconductor strip subject to an oscillating transverse magnetic field: Geometrical and electromagnetic effects. Journal of Applied Physics, 2013, 114, 193902.	1.1	3
49	Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry. Journal of Low Temperature Physics, 2017, 186, 106-120.	0.6	3
50	Experimental Characterization of a No-Insulation HTS Racetrack Coil Subjected to Travelling Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	3
51	3-D Analysis of Electromagnetic Forces of a Real-Scale Superconducting Linear Synchronous Motor for EDS Train. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	3
52	Levitation Performance of a Magnetized Bulk YBCO With Different Demagnetization Processes. IEEE Transactions on Applied Superconductivity, 2012, 22, 3600704-3600704.	1.1	2
53	Critical Current Estimation of HTS Coil Considering the Tape Inhomogeneity and Different Criteria. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	2
54	Transmittal properties of a superconductor-ferromagnetic metamaterial subjected to magnetic fields generated by the permanent magnets. International Journal of Modern Physics B, 2015, 29, 1542049.	1.0	1

Guang-Tong

#	Article	IF	CITATIONS
55	Structure Optimization of a Superconducting Linear Generator with YBCO Tape Windings. IEEE Transactions on Applied Superconductivity, 2021, , 1-1.	1.1	1
56	Fast Optimization of Null-Flux Coils for Superconducting Electrodynamic Suspension Train With RSM and AMGA. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-8.	1.1	1
57	A High-Temperature Superconducting Magnetic Transmission Device. IEEE Transactions on Applied Superconductivity, 2009, 19, 3744-3749.	1.1	0
58	Structure Optimization of a Fully-Superconducting Magnetic Bearing With Hybrid Magnet Stator. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-12.	1.1	0