Iliya Lefterov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2513901/publications.pdf

Version: 2024-02-01

186265 276875 3,039 42 28 41 citations h-index g-index papers 43 43 43 4012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Binding of the Positron Emission Tomography Tracer Pittsburgh Compound-B Reflects the Amount of Amyloid- \hat{l}^2 in Alzheimer's Disease Brain But Not in Transgenic Mouse Brain. Journal of Neuroscience, 2005, 25, 10598-10606.	3.6	357
2	Lack of ABCA1 Considerably Decreases Brain ApoE Level and Increases Amyloid Deposition in APP23 Mice. Journal of Biological Chemistry, 2005, 280, 43224-43235.	3.4	305
3	The Liver X Receptor Ligand T0901317 Decreases Amyloid \hat{l}^2 Production in Vitro and in a Mouse Model of Alzheimer's Disease. Journal of Biological Chemistry, 2005, 280, 4079-4088.	3.4	236
4	22R-Hydroxycholesterol and 9-cis-Retinoic Acid Induce ATP-binding Cassette Transporter A1 Expression and Cholesterol Efflux in Brain Cells and Decrease Amyloid \hat{l}^2 Secretion. Journal of Biological Chemistry, 2003, 278, 13244-13256.	3.4	215
5	Liver X Receptor Agonist Treatment Ameliorates Amyloid Pathology and Memory Deficits Caused by High-Fat Diet in APP23 Mice. Journal of Neuroscience, 2010, 30, 6862-6872.	3.6	155
6	Comment on "ApoE-Directed Therapeutics Rapidly Clear β-Amyloid and Reverse Deficits in AD Mouse Models― Science, 2013, 340, 924-924.	12.6	137
7	The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. International Journal of Molecular Sciences, 2019, 20, 81.	4.1	123
8	Apolipoprotein A-I Deficiency Increases Cerebral Amyloid Angiopathy and Cognitive Deficits in APP/PS1î"E9 Mice. Journal of Biological Chemistry, 2010, 285, 36945-36957.	3.4	106
9	Abca1 Deficiency Affects Alzheimer's Disease-Like Phenotype in Human ApoE4 But Not in ApoE3-Targeted Replacement Mice. Journal of Neuroscience, 2012, 32, 13125-13136.	3.6	105
10	ATP-binding cassette transporter A1: From metabolism to neurodegeneration. Neurobiology of Disease, 2014, 72, 13-21.	4.4	99
11	Heavy Chronic Intermittent Ethanol Exposure Alters Small Noncoding RNAs in Mouse Sperm and Epididymosomes. Frontiers in Genetics, 2018, 9, 32.	2.3	88
12	Genome-Wide Alteration of Histone H3K9 Acetylation Pattern in Mouse Offspring Prenatally Exposed to Arsenic. PLoS ONE, 2013, 8, e53478.	2.5	85
13	The role of ATP-binding cassette transporter A1 in Alzheimer's disease and neurodegeneration. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 824-830.	2.4	77
14	Expression profiling in APP23 mouse brain: inhibition of $\hat{Al^2}$ amyloidosis and inflammation in response to LXR agonist treatment. Molecular Neurodegeneration, 2007, 2, 20.	10.8	74
15	Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiology of Disease, 2014, 63, 107-114.	4.4	70
16	Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Scientific Reports, 2017, 7, 4307.	3.3	69
17	Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nature Aging, 2021, 1, 1148-1161.	11.6	59
18	Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nature Communications, 2021, 12, 3416.	12.8	57

#	Article	IF	Citations
19	Memory Deficits in APP23/ <i>Abca1</i> i>$1 < 1 <$	2.7	53
20	Bexarotene-Activated Retinoid X Receptors Regulate Neuronal Differentiation and Dendritic Complexity. Journal of Neuroscience, 2015, 35, 11862-11876.	3.6	52
21	Role of LXR and ABCA1 in the Pathogenesis of Alzheimers Disease -Implications for a New Therapeutic Approach. Current Alzheimer Research, 2007, 4, 171-178.	1.4	50
22	Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Molecular Neurodegeneration, 2020, 15, 41.	10.8	43
23	APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimer's Research and Therapy, 2019, 11, 113.	6.2	42
24	Gene co-expression networks identify Trem2 and Tyrobp as major hubs in human APOE expressing mice following traumatic brain injury. Neurobiology of Disease, 2017, 105, 1-14.	4.4	39
25	RXR controlled regulatory networks identified in mouse brain counteract deleterious effects of A \hat{l}^2 oligomers. Scientific Reports, 2016, 6, 24048.	3.3	37
26	Proton pump inhibitor Lansoprazole is a nuclear liver X receptor agonist. Biochemical Pharmacology, 2010, 79, 1310-1316.	4.4	30
27	Opposing effects of <i> Apoe < /i > / <i> Apoa 1 < /i > double deletion on amyloid-\hat{l}^2 pathology and cognitive performance in APP mice. Brain, 2015, 138, 3699-3715.</i></i>	7.6	29
28	Improvement of Memory Deficits and Amyloid- \hat{l}^2 Clearance in Aged APP23 Mice Treated with a Combination of Anti-Amyloid- \hat{l}^2 Antibody and LXR Agonist. Journal of Alzheimer's Disease, 2014, 41, 535-549.	2.6	28
29	RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiology of Disease, 2015, 82, 132-140.	4.4	27
30	Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer's disease. British Journal of Pharmacology, 2019, 176, 3599-3610.	5.4	25
31	An Evolutionarily Conserved Cysteine Protease, Human Bleomycin Hydrolase, Binds to the Human Homologue of Ubiquitin-Conjugating Enzyme 9. Molecular Pharmacology, 1998, 54, 954-961.	2.3	24
32	Integrated approach reveals diet, APOE genotype and sex affect immune response in APP mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 152-161.	3.8	23
33	Anti-Amyloid Effects of Small Molecule Aβ-Binding Agents in PS1/APP Mice. Letters in Drug Design and Discovery, 2009, 6, 437-444.	0.7	21
34	ABCA1 Deficiency Affects Basal Cognitive Deficits and Dendritic Density in Mice. Journal of Alzheimer's Disease, 2017, 56, 1075-1085.	2.6	20
35	Small nucleolar RNAs in plasma extracellular vesicles and their discriminatory power as diagnostic biomarkers of Alzheimer's disease. Neurobiology of Disease, 2021, 159, 105481.	4.4	17
36	Cysteine 73 in Bleomycin Hydrolase Is Critical for Amyloid Precursor Protein Processing. Biochemical and Biophysical Research Communications, 2001, 283, 994-999.	2.1	16

3

#	ARTICLE	IF	CITATION
37	ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms. Acta Neuropathologica Communications, 2018, 6, 69.	5.2	16
38	Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice. PLoS ONE, 2017, 12, e0172161.	2.5	16
39	Functional and genetic characterization of the promoter region of apolipoprotein H (β ₂ â€glycoprotein I). FEBS Journal, 2010, 277, 951-963.	4.7	7
40	Synergistic effect of CCNU and bleomycin on human lymphocytes exposed at late G1 and G2 states of the cell cycle. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1991, 260, 265-269.	1.2	4
41	Genome-wide alteration of histone methylation profiles associated with cognitive changes in response to developmental arsenic exposure in mice. Toxicology Reports, 2022, 9, 393-403.	3.3	3
42	Metabolic Disorders and Neurodegeneration, introduction to the special issue. Neurobiology of Disease, 2014, 72, 1-2.	4.4	0