
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2513631/publications.pdf Version: 2024-02-01

ΒΟΙΛΝ ΜΟΔΙΝΑΚ

#	Article	IF	CITATIONS
1	Analytic modeling of recurrent Forbush decreases caused by corotating interaction regions. Astronomy and Astrophysics, 2022, 658, A186.	5.1	3
2	Determination of coronal mass ejection orientation and consequences for their propagation. Astronomy and Astrophysics, 2022, 661, A155.	5.1	6
3	Deriving CME Density From Remote Sensing Data and Comparison to Inâ€Situ Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028380.	2.4	20
4	Analytical and empirical modelling of the origin and heliospheric propagation of coronal mass ejections, and space weather applications. Journal of Space Weather and Space Climate, 2021, 11, 34.	3.3	9
5	Validation of Global EUV Wave MHD Simulations and Observational Techniques. Astrophysical Journal, 2021, 911, 118.	4.5	23
6	Drag-Based Model (DBM) Tools for Forecast of Coronal Mass Ejection Arrival Time and Speed. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	18
7	Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs. Solar Physics, 2021, 296, 1.	2.5	19
8	Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 2021, 8, 56.	3.0	56
9	Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs. Multi-Spacecraft Observations. Solar Physics, 2020, 295, 1.	2.5	18
10	Sun-to-Earth Observations and Characteristics of Isolated Earth-Impacting Interplanetary Coronal Mass Ejections During 2008 – 2014. Solar Physics, 2020, 295, 1.	2.5	6
11	On the Interaction of Galactic Cosmic Rays with Heliospheric Shocks During Forbush Decreases. Solar Physics, 2020, 295, 1.	2.5	4
12	Gradual Pre-eruptive Phase of Solar Coronal Eruptions. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	5
13	Heliospheric Evolution of Magnetic Clouds. Astrophysical Journal, 2019, 877, 77.	4.5	34
14	Study of Interplanetary CMEs/Shocks During Solar Cycle 24 Using Drag-Based Model: The Role of Solar Wind. Solar Physics, 2019, 294, 1.	2.5	3
15	The Origin, Early Evolution and Predictability of Solar Eruptions. Space Sciences Series of ISSI, 2019, , 113-164.	0.0	Ο
16	The Origin, Early Evolution and Predictability of Solar Eruptions. Space Science Reviews, 2018, 214, 1.	8.1	178
17	The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophysical Journal, 2018, 854, 180.	4.5	58
18	Numerical Simulation of Coronal Waves Interacting with Coronal Holes. II. Dependence on Alfvén Speed Inside the Coronal Hole. Astrophysical Journal, 2018, 857, 130.	4.5	11

#	Article	IF	CITATIONS
19	Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 39-56.	2.4	17
20	Type II solar radio burst band-splitting: Measure of coronal magnetic field strength. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 172, 75-82.	1.6	11
21	The Dependence of the Peak Velocity of Highâ€Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Coâ€latitude of Their Solar Source Coronal Holes. Journal of Geophysical Research: Space Physics, 2018, 123, 1738-1753.	2.4	29
22	An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes. Astrophysical Journal, 2018, 860, 71.	4.5	39
23	Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection. Astrophysical Journal, 2018, 868, 107.	4.5	79
24	Numerical Simulation of Coronal Waves Interacting with Coronal Holes. III. Dependence on Initial Amplitude of the Incoming Wave. Astrophysical Journal, 2018, 860, 24.	4.5	11
25	Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24. Astrophysical Journal, 2017, 835, 268.	4.5	42
26	Understanding the Physical Nature of Coronal "EIT Waves― Solar Physics, 2017, 292, 7.	2.5	67
27	Geomagnetic Effects of Corotating Interaction Regions. Solar Physics, 2017, 292, 1.	2.5	18
28	Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System. Solar Physics, 2017, 292, 1.	2.5	5
29	The Physical Processes of CME/ICME Evolution. Space Science Reviews, 2017, 212, 1159-1219.	8.1	179
30	A Numerical Simulation of Coronal Waves Interacting with Coronal Holes. I. Basic Features. Astrophysical Journal, 2017, 850, 88.	4.5	14
31	Investigation on M-class Flare-Associated Coronal Mass Ejections with and Without DH Type II Radio Bursts. Solar Physics, 2017, 292, 1.	2.5	3
32	The Physical Processes of CME/ICME Evolution. Space Sciences Series of ISSI, 2017, , 165-225.	0.0	0
33	Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System. , 2017, , 689-702.		0
34	Solar eruptions: The CMEâ€flare relationship. Astronomische Nachrichten, 2016, 337, 1002-1009.	1.2	40
35	Forbush Decrease Prediction Based on Remote Solar Observations. Solar Physics, 2016, 291, 285-302.	2.5	12
36	Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010. Sola Physics, 2016, 291, 1483-1531.	r 2.5	40

#	Article	IF	CITATIONS
37	On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 7423-7434.	2.4	36
38	Extreme Geomagnetic Storms – 1868 – 2010. Solar Physics, 2016, 291, 1447-1481.	2.5	45
39	Predicting coronal mass ejections transit times to Earth with neural network. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1542-1548.	4.4	32
40	Formation of Coronal Large-Amplitude Waves and the Chromospheric Response. Solar Physics, 2016, 291, 89-115.	2.5	30
41	Investigation of X-class Flare-Associated Coronal Mass Ejections with and without DH Type II Radio Bursts. Solar Physics, 2015, 290, 3365-3377.	2.5	8
42	Flare-CME Models: An Observational Perspective (Invited Review). Solar Physics, 2015, 290, 3457-3486.	2.5	113
43	Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 2015, 6, 7135.	12.8	142
44	Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data. Solar Physics, 2015, 290, 1355-1370.	2.5	40
45	HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED MODEL FITTING. Astrophysical Journal, Supplement Series, 2015, 218, 32.	7.7	57
46	Geoeffectiveness of Coronal Mass Ejections in the SOHO Era. Solar Physics, 2015, 290, 579-612.	2.5	43
47	Interaction Between Two CMEs During 14 – 15 February 2011 and Their Unusual Radio Signature. Sol Physics, 2014, 289, 4621-4632.	ar 2.5	15
48	Statistical Analysis of Large-Scale EUV Waves Observed by STEREO/EUVI. Solar Physics, 2014, 289, 4563-4588.	2.5	43
49	ASYMMETRY IN THE CME-CME INTERACTION PROCESS FOR THE EVENTS FROM 2011 FEBRUARY 14-15. Astrophysical Journal, 2014, 785, 85.	4.5	63
50	Kinematics of Interacting ICMEs and Related Forbush Decrease: Case Study. Solar Physics, 2014, 289, 351-368.	2.5	42
51	Investigation of the Coronal Magnetic Field Using a Type II Solar Radio Burst. Solar Physics, 2014, 289, 251-261.	2.5	26
52	Transit Time of Coronal Mass Ejections under Different Ambient Solar Wind Conditions. Solar Physics, 2014, 289, 339-349.	2.5	23
53	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	4.5	145
54	COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 790, L6.	8.3	45

#	Article	IF	CITATIONS
55	HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL. Astrophysical Journal, Supplement Series, 2014, 213, 21.	7.7	76
56	Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) Quadrature Observations of Reflections of Three EUV Waves from a Coronal Hole. Solar Physics, 2013, 286, 201-219.	2.5	29
57	The Wave–Driver System of the Off-Disk Coronal Wave of 17 January 2010. Solar Physics, 2013, 287, 441-454.	2.5	9
58	Formation of Coronal Shock Waves. Solar Physics, 2013, 286, 509-528.	2.5	21
59	Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Solar Physics, 2013, 285, 295-315.	2.5	257
60	Initiation of Coronal Mass Ejections by Sunspot Rotation. Solar Physics, 2013, 286, 453-477.	2.5	44
61	Initiation of Coronal Mass Ejections by Sunspot Rotation. Proceedings of the International Astronomical Union, 2013, 8, 201-208.	0.0	0
62	Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astronomy and Astrophysics, 2013, 558, A85.	5.1	31
63	CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME–CME INTERACTION EVENT. Astrophysical Journal, 2012, 749, 57.	4.5	127
64	IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS. Astrophysical Journal, 2012, 755, 44.	4.5	64
65	FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION. Astrophysical Journal, 2012, 746, 152.	4.5	50
66	Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU. Solar Physics, 2012, 281, 793-813.	2.5	83
67	Cosmic ray modulation by different types of solar wind disturbances. Astronomy and Astrophysics, 2012, 538, A28.	5.1	66
68	Characteristics of DH type II bursts, CMEs and flares with respect to the acceleration of CMEs. Astrophysics and Space Science, 2012, 337, 47-64.	1.4	7
69	Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) Quadrature Observations of Reflections of Three EUV Waves from a Coronal Hole. , 2012, , 201-219.		0
70	Improved forecasts of solar wind parameters using the Kalman filter. Space Weather, 2011, 9, .	3.7	20
71	Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astronomy and Astrophysics, 2011, 533, A49.	5.1	41
72	INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2011, 743, 101.	4.5	92

#	Article	IF	CITATIONS
73	IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. I. STATISTICS AND CORONAL MASS EJECTION SOURCE REGION CHARACTERISTICS. Astrophysical Journal, 2011, 738, 191.	4.5	112
74	ANALYSIS OF CHARACTERISTIC PARAMETERS OF LARGE-SCALE CORONAL WAVES OBSERVED BY THE <i>SOLAR-TERRESTRIAL RELATIONS OBSERVATORY</i> /I>/EXTREME ULTRAVIOLET IMAGER. Astrophysical Journal, 2011, 739, 89.	4.5	46
75	Cosmic ray modulation by solar wind disturbances. Astronomy and Astrophysics, 2011, 531, A91.	5.1	49
76	CASE STUDY OF FOUR HOMOLOGOUS LARGE-SCALE CORONAL WAVES OBSERVED ON 2010 APRIL 28 AND 29. Astrophysical Journal Letters, 2011, 727, L43.	8.3	32
77	COMMISSION 10: SOLAR ACTIVITY. Proceedings of the International Astronomical Union, 2011, 7, 69-80.	0.0	3
78	PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY <i>HINODE</i> /EIS AND <i>SDO</i> /AIA. Astrophysical Journal Letters, 2011, 743, L10.	8.3	43
79	Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astronomy and Astrophysics, 2011, 526, A20.	5.1	52
80	Correlation between CME and Flare Parameters (with and without Type II Bursts). Solar Physics, 2011, 270, 273-284.	2.5	6
81	Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 – 2001. Solar Physic 2011, 271, 183-195.	^S 2.5	12
82	Characteristics of Type-II Radio Bursts Associated with Flares and CMEs. Solar Physics, 2011, 273, 143-162.	2.5	17
83	FIRST OBSERVATIONS OF A DOME-SHAPED LARGE-SCALE CORONAL EXTREME-ULTRAVIOLET WAVE. Astrophysical Journal Letters, 2010, 716, L57-L62.	8.3	170
84	MULTIWAVELENGTH IMAGING AND SPECTROSCOPY OF CHROMOSPHERIC EVAPORATION IN AN M-CLASS SOLAR FLARE. Astrophysical Journal, 2010, 719, 655-670.	4.5	36
85	ORIGIN OF CORONAL SHOCK WAVES ASSOCIATED WITH SLOW CORONAL MASS EJECTIONS. Astrophysical Journal, 2010, 718, 266-278.	4.5	52
86	ANALYSIS OF A GLOBAL MORETON WAVE OBSERVED ON 2003 OCTOBER 28. Astrophysical Journal, 2010, 708, 1639-1649.	4.5	48
87	ON THE ORIGIN OF THE SOLAR MORETON WAVE OF 2006 DECEMBER 6. Astrophysical Journal, 2010, 723, 587-601.	4.5	39
88	Coronal Shocks Associated with Impulsive and Decaying Phases of Solar Flares. Solar Physics, 2010, 264, 353-364.	2.5	3
89	Type-II Bursts in Meter and Deca – Hectometer Wavelengths andÂTheir Relation to Flares andÂCMEs: II. Solar Physics, 2010, 266, 135-147.	2.5	12
90	MODELING UV AND X-RAY EMISSION IN A POST-CORONAL MASS EJECTION CURRENT SHEET. Astrophysical Journal, 2010, 722, 625-641.	4.5	36

#	Article	IF	CITATIONS
91	The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astronomy and Astrophysics, 2010, 512, A43.	5.1	102
92	Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters. Space Weather, 2010, 8, n/a-n/a.	3.7	24
93	COMBINED <i>STEREO/RHESSI</i> STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES. Astrophysical Journal, 2010, 712, 1410-1420.	4.5	162
94	Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astronomy and Astrophysics, 2009, 499, 893-904.	5.1	46
95	ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS. Astrophysical Journal, 2009, 702, 1343-1352.	4.5	40
96	Type II Radio Bursts with High and Low Starting Frequencies. Solar Physics, 2009, 254, 297-310.	2.5	17
97	Radial Evolution of Well-Observed Slow CMEs inÂtheÂDistance Range 2 – 30 R ⊙. Solar Physics, 200 351-361.	09, 257, 2.5	7
98	Type II bursts in Meter and Decameter – Hectometer Wavelength Ranges and Their Relation to Flares andÂCMEs. Solar Physics, 2009, 258, 105-118.	2.5	20
99	Relative Kinematics of the Leading Edge andÂtheÂProminence in Coronal Mass Ejections. Solar Physics, 2009, 260, 177-189.	2.5	19
100	Analyses of magnetic field structures for active region 10720 using a data-driven 3D MHD model. Advances in Space Research, 2009, 44, 46-53.	2.6	17
101	THE ROLE OF RECONNECTION IN THE CME/FLARE PROCESS. , 2009, , 43-58.		Ο
102	Cylindrical and Spherical Pistons as Drivers of MHD Shocks. Solar Physics, 2008, 253, 237-247.	2.5	32
103	A Flare-Generated Shock during a Coronal Mass Ejection on 24 December 1996. Solar Physics, 2008, 253, 305-317.	2.5	51
104	Origin of Coronal Shock Waves. Solar Physics, 2008, 253, 215-235.	2.5	205
105	Cosmic ray modulation by corotating interaction regions. Proceedings of the International Astronomical Union, 2008, 4, 425-427.	0.0	8
106	COMMISSION 10: SOLAR ACTIVITY. Proceedings of the International Astronomical Union, 2008, 4, 79-103.	0.0	5
107	The role of aerodynamic drag in dynamics of coronal mass ejections. Proceedings of the International Astronomical Union, 2008, 4, 271-277.	0.0	3
108	Dynamics of plasmoids formed by the current sheet tearing. Astronomy and Astrophysics, 2008, 477, 649-655.	5.1	85

#	Article	IF	CITATIONS
109	Acceleration in Fast Halo CMEs and Synchronized Flare HXR Bursts. Astrophysical Journal, 2008, 673, L95-L98.	4.5	173
110	High-Cadence Observations of a Global Coronal Wave by <i>STEREO</i> EUVI. Astrophysical Journal, 2008, 681, L113-L116.	4.5	146
111	Processes and mechanisms governing the initiation and propagation of CMEs. Annales Geophysicae, 2008, 26, 3089-3101.	1.6	85
112	Dynamics of coronal mass ejections. Astronomy and Astrophysics, 2008, 490, 811-815.	5.1	33
113	Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Annales Geophysicae, 2008, 26, 3139-3152.	1.6	79
114	Transit times of interplanetary coronal mass ejections and the solar wind speed. Astronomy and Astrophysics, 2007, 472, 937-943.	5.1	94
115	Energy Release Rates along Hα Flare Ribbons and the Location of Hard Xâ€Ray Sources. Astrophysical Journal, 2007, 654, 665-674.	4.5	60
116	The magnetic flux and self-inductivity of a thick toroidal current. Journal of Plasma Physics, 2007, 73, 741-756.	2.1	11
117	Projection effects in coronal mass ejections. Astronomy and Astrophysics, 2007, 469, 339-346.	5.1	41
118	On the solar rotation and activity. Astronomische Nachrichten, 2007, 328, 1013-1015.	1.2	12
119	Helical Eruptive Prominence Associated with a Pair of Overlapping CMEs on 21 April 2001. Solar Physics, 2007, 240, 89-105.	2.5	7
120	Acceleration Phase of Coronal Mass Ejections: I. Temporal and Spatial Scales. Solar Physics, 2007, 241, 85-98.	2.5	63
121	Coronal Holes and Solar Wind High-Speed Streams: I.ÂForecasting the Solar Wind Parameters. Solar Physics, 2007, 240, 315-330.	2.5	123
122	Acceleration Phase of Coronal Mass Ejections: II.ÂSynchronization of the Energy Release in the Associated Flare. Solar Physics, 2007, 241, 99-112.	2.5	104
123	Coronal Holes and Solar Wind High-Speed Streams: II.ÂForecasting the Geomagnetic Effects. Solar Physics, 2007, 240, 331-346.	2.5	46
124	Periodic Appearance of Coronal Holes and the Related Variation of Solar Wind Parameters. Solar Physics, 2007, 241, 371-383.	2.5	98
125	Reconnection and energy release rates in a two-ribbon flare. Astronomy and Astrophysics, 2007, 461, 697-706.	5.1	60
126	Forces governing coronal mass ejections. Advances in Space Research, 2006, 38, 431-440.	2.6	30

#	Article	IF	CITATIONS
127	Shrinking and Cooling of Flare Loops in a Two-Ribbon Flare. Solar Physics, 2006, 234, 273-299.	2.5	28
128	Millisecond solar radio bursts in the metric wavelength range. AIP Conference Proceedings, 2006, , .	0.4	0
129	X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. Astronomy and Astrophysics, 2006, 446, 675-690.	5.1	132
130	Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astronomy and Astrophysics, 2006, 448, 739-752.	5.1	88
131	Interaction of a Moreton/EIT Wave and a Coronal Hole. Astrophysical Journal, 2006, 647, 1466-1471.	4.5	76
132	Broadband Metric-Range Radio Emission Associated with a Moreton/EIT Wave. Astrophysical Journal, 2005, 625, L67-L70.	4.5	38
133	2 1/2-Dimensional Reconnection Model and Energy Release in Solar Flares. Solar Physics, 2005, 226, 97-119.	2.5	30
134	Spatial Distribution and North–South Asymmetry of Coronal Bright Points from Mid-1998 to Mid-1999. Solar Physics, 2005, 231, 29-44.	2.5	10
135	The CME-flare relationship: Are there really two types of CMEs?. Astronomy and Astrophysics, 2005, 435, 1149-1157.	5.1	117
136	Terminology of large-scale waves in the solar atmosphere. Eos, 2005, 86, 112-113.	0.1	31
137	A multiwavelength study of solar flare waves. Astronomy and Astrophysics, 2004, 418, 1117-1129.	5.1	136
138	A multiwavelength study of solar flare waves. Astronomy and Astrophysics, 2004, 418, 1101-1115.	5.1	153
139	Coronal Mass Ejection of 15 May 2001: I. Evolution of Morphological Features of the Eruption. Solar Physics, 2004, 225, 337-353.	2.5	68
140	Coronal Mass Ejection of 15 May 2001: II. Coupling of the Cme Acceleration and the Flare Energy Release. Solar Physics, 2004, 225, 355-378.	2.5	75
141	Exact Solution of Jump Relations at Discontinuities in a Two-And-Half-Dimensional Compressible Reconnection Model. Proceedings of the International Astronomical Union, 2004, 2004, 274-276.	0.0	1
142	Kinematics of coronal mass ejections between 2 and 30 solar radii. Astronomy and Astrophysics, 2004, 423, 717-728.	5.1	113
143	Band-splitting of coronal and interplanetary type II bursts. Astronomy and Astrophysics, 2004, 413, 753-763.	5.1	120
144	Interaction of an Erupting Filament with the Ambient Magnetoplasma and Escape of Electron Beams. Solar Physics, 2003, 217, 187-198.	2.5	12

#	Article	IF	CITATIONS
145	Band-splitting of coronal and interplanetary type II bursts. Astronomy and Astrophysics, 2002, 396, 673-682.	5.1	158
146	Influence of the aerodynamic drag on the motion of interplanetary ejecta. Journal of Geophysical Research, 2002, 107, SSH 2-1-SSH 2-6.	3.3	123
147	Investigation of the Neupert effect in solar flares. Astronomy and Astrophysics, 2002, 392, 699-712.	5.1	127
148	Differential Rotation of Stable Recurrent Sunspot Groups. Solar Physics, 2002, 206, 229-241.	2.5	39
149	Relative timing of solar flares observed at different wavelengths. Solar Physics, 2002, 208, 297-315.	2.5	41
150	Flare waves observed in Helium I 10 830Âà Astronomy and Astrophysics, 2002, 394, 299-310.	5.1	102
151	Dynamics of solar coronal eruptions. Journal of Geophysical Research, 2001, 106, 25249-25259.	3.3	60
152	Solar flares and coronal shock waves. Journal of Geophysical Research, 2001, 106, 25291-25300.	3.3	38
153	An Analysis of the Solar Rotation Velocity by Tracing Coronal Features. Symposium - International Astronomical Union, 2001, 203, 377-380.	0.1	1
154	Band-splitting of coronal and interplanetary type II bursts. Astronomy and Astrophysics, 2001, 377, 321-329.	5.1	125
155	Evolution of Two EIT/Hα Moreton Waves. Astrophysical Journal, 2001, 560, L105-L109.	4.5	152
156	Deceleration of Coronal Mass Ejections. Solar Physics, 2001, 202, 173-189.	2.5	86
157	Comparative Analysis of Type ii Bursts and of Thermal and non-Thermal Flare Signatures. Solar Physics, 2001, 202, 319-335.	2.5	22
158	Title is missing!. Solar Physics, 2000, 196, 279-297.	2.5	23
159	Formation Of Coronal Mhd Shock Waves – I. The Basic Mechanism. Solar Physics, 2000, 196, 157-180.	2.5	84
160	Formation of coronal MHD shock waves – II. The Pressure Pulse Mechanism. Solar Physics, 2000, 196, 181-197.	2.5	59
161	Characteristics of Flares with $H\hat{I}_{\pm}$ Emission Protruding over Major Sunspot Umbrae. Solar Physics, 2000, 194, 285-303.	2.5	4

162 Title is missing!. Solar Physics, 1999, 185, 207-225.

2.5 20

#	Article	IF	CITATIONS
163	Title is missing!. Solar Physics, 1999, 184, 281-296.	2.5	16
164	Flares in Sigmoidal Coronal Structures – a Case Study. Solar Physics, 1999, 190, 267-293.	2.5	49
165	A Method to Determine the Solar Synodic Rotation Rate and the Height of Tracers. Solar Physics, 1998, 179, 237-252.	2.5	22
166	Prominence Eruptions. International Astronomical Union Colloquium, 1998, 167, 302-309.	0.1	1
167	Title is missing!. Solar Physics, 1997, 171, 1-34.	2.5	22
168	Helium 10830 â,,« measurements of the Sun. Solar Physics, 1996, 163, 79-91.	2.5	22
169	The relation between the synodic and sidereal rotation period of the Sun. Solar Physics, 1995, 159, 393-398.	2.5	31
170	Kinematics and evolution of twist in the eruptive prominence of August 18, 1980. Solar Physics, 1993, 146, 147-162.	2.5	34
171	Stability of prominences exposing helical-like patterns. Solar Physics, 1991, 136, 151-167.	2.5	127
172	Oscillatory motions in an active prominence. Solar Physics, 1990, 127, 119-128.	2.5	26
173	Dynamics and internal structure of an eruptive prominence. Solar Physics, 1990, 127, 129-137.	2.5	25
174	Eruptive instability of cylindrical prominences. Solar Physics, 1990, 129, 295-312.	2.5	93
175	Structure and stability of prominences with helical structure. Solar Physics, 1988, 116, 45-60.	2.5	49
176	The oscillating loop prominence of July 17, 1981. Solar Physics, 1984, 94, 289-297.	2.5	23