
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2513084/publications.pdf Version: 2024-02-01

ΡΑΠΙ Ι ΑΝΙζΑΝ

#	Article	IF	CITATIONS
1	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
2	Crystal Structure and Hydrogen-Bonding System in Cellulose IÎ ² from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 2002, 124, 9074-9082.	13.7	2,231
3	Crystal Structure and Hydrogen Bonding System in Cellulose Iαfrom Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 2003, 125, 14300-14306.	13.7	1,274
4	X-ray Structure of Mercerized Cellulose II at 1 Ã Resolution. Biomacromolecules, 2001, 2, 410-416.	5.4	457
5	A Revised Structure and Hydrogen-Bonding System in Cellulose II from a Neutron Fiber Diffraction Analysis. Journal of the American Chemical Society, 1999, 121, 9940-9946.	13.7	328
6	Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate. Journal of the American Chemical Society, 2011, 133, 11163-11174.	13.7	321
7	Cellulose IIII Crystal Structure and Hydrogen Bonding by Synchrotron X-ray and Neutron Fiber Diffraction. Macromolecules, 2004, 37, 8548-8555.	4.8	267
8	Joint X-ray and neutron refinement with <i>phenix.refine</i> . Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1153-1163.	2.5	259
9	Periodic Disorder along Ramie Cellulose Microfibrils. Biomacromolecules, 2003, 4, 1013-1017.	5.4	216
10	Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose I _{1²} . Biomacromolecules, 2008, 9, 3133-3140.	5.4	215
11	Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chemistry, 2014, 16, 63-68.	9.0	198
12	Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 2010, 18, 688-699.	3.3	139
13	Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 567-573.	2.5	137
14	Neutron crystallography: opportunities, challenges, and limitations. Current Opinion in Structural Biology, 2008, 18, 593-600.	5.7	136
15	Insights into Hydrogen Bonding and Stacking Interactions in Cellulose. Journal of Physical Chemistry A, 2011, 115, 14191-14202.	2.5	122
16	Ionic-Liquid Induced Changes in Cellulose Structure Associated with Enhanced Biomass Hydrolysis. Biomacromolecules, 2011, 12, 3091-3098.	5.4	113
17	Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnology for Biofuels, 2014, 7, 150.	6.2	113
18	A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers. Plant Physiology, 2016, 170, 123-135.	4.8	104

#	Article	IF	CITATIONS
19	Synchrotron X-ray structures of cellulose lβ and regenerated cellulose II at ambient temperature and 100ÂK. Cellulose, 2005, 12, 551-562.	4.9	102
20	Conformational Flexibility of Soluble Cellulose Oligomers: Chain Length and Temperature Dependence. Journal of the American Chemical Society, 2009, 131, 14786-14794.	13.7	102
21	X-ray Structure of Ammoniaâ``Cellulose I:Â New Insights into the Conversion of Cellulose I to Cellulose IIII. Macromolecules, 2006, 39, 2947-2952.	4.8	94
22	Nature and Kinetic Analysis of Carbonâ^'Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model Compounds. Journal of Organic Chemistry, 2010, 75, 6549-6562.	3.2	88
23	Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer. Biochemistry, 2010, 49, 415-421.	2.5	82
24	Dynamics of water bound to crystalline cellulose. Scientific Reports, 2017, 7, 11840.	3.3	82
25	Exploring new strategies for cellulosic biofuels production. Energy and Environmental Science, 2011, 4, 3820.	30.8	79
26	Rapid determination of hydrogen positions and protonation states of diisopropyl fluorophosphatase by joint neutron and X-ray diffraction refinement. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 713-718.	7.1	77
27	Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18225-18230.	7.1	72
28	Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallographica Section B: Structural Science, 2002, 58, 728-733.	1.8	70
29	Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18493-18498.	7.1	68
30	Protein crystallography with spallation neutrons: the user facility at Los Alamos Neutron Science Center. Journal of Applied Crystallography, 2004, 37, 24-31.	4.5	66
31	The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source. Journal of Applied Crystallography, 2015, 48, 1302-1306.	4.5	64
32	X-ray Crystallographic, Scanning Microprobe X-ray Diffraction, and Cross-Polarized/Magic Angle Spinning 13C NMR Studies of the Structure of Cellulose IIIII. Biomacromolecules, 2009, 10, 302-309.	5.4	63
33	ldentification of the Elusive Hydronium Ion Exchanging Roles with a Proton in an Enzyme at Lower pHâ€Values. Angewandte Chemie - International Edition, 2011, 50, 7520-7523.	13.8	62
34	Joint X-ray/Neutron Crystallographic Study of HIV-1 Protease with Clinical Inhibitor Amprenavir: Insights for Drug Design. Journal of Medicinal Chemistry, 2013, 56, 5631-5635.	6.4	61
35	Locating active-site hydrogen atoms in D-xylose isomerase: Time-of-flight neutron diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8342-8347.	7.1	60
36	Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose, 2014, 21, 1015-1024.	4.9	56

#	Article	IF	CITATIONS
37	Water in Crystalline Fibers of Dihydrate β-Chitin Results in Unexpected Absence of Intramolecular Hydrogen Bonding. PLoS ONE, 2012, 7, e39376.	2.5	55
38	MARTINI Coarse-Grained Model for Crystalline Cellulose Microfibers. Journal of Physical Chemistry B, 2015, 119, 465-473.	2.6	54
39	New sources and instrumentation for neutrons in biology. Chemical Physics, 2008, 345, 133-151.	1.9	53
40	Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresource Technology, 2011, 102, 4518-4523.	9.6	53
41	Neutron Structure of Human Carbonic Anhydrase II: A Hydrogen-Bonded Water Network "Switch―Is Observed between pH 7.8 and 10.0. Biochemistry, 2011, 50, 9421-9423.	2.5	52
42	Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15301-15306.	7.1	51
43	Looking at hydrogen bonds in cellulose. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1172-1177.	2.5	48
44	Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose, 2014, 21, 2419-2431.	4.9	47
45	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	2.3	47
46	Protein crystallography with spallation neutrons: collecting and processing wavelength-resolved Laue protein data. Journal of Applied Crystallography, 2004, 37, 253-257.	4.5	45
47	A high-angle neutron fibre diffraction study of the hydration of deuterated A-DNA. Biophysical Chemistry, 1997, 69, 85-96.	2.8	44
48	Hydration Control of the Mechanical and Dynamical Properties of Cellulose. Biomacromolecules, 2014, 15, 4152-4159.	5.4	44
49	The effect of deuteration on protein structure: a high-resolution comparison of hydrogenous and perdeuterated haloalkane dehalogenase. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1000-1008.	2.5	42
50	Neutron and X-ray structural studies of short hydrogen bonds in photoactive yellow protein (PYP). Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1178-1184.	2.5	42
51	Hydrogen Location in Stages of an Enzyme-Catalyzed Reaction: Time-of-Flight Neutron Structure of d-Xylose Isomerase with Bound d-Xylulose. Biochemistry, 2008, 47, 7595-7597.	2.5	42
52	The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose, 2009, 16, 943-957.	4.9	42
53	Hydrolysis of DFP and the Nerve Agent (<i>S</i>)-Sarin by DFPase Proceeds along Two Different Reaction Pathways: Implications for Engineering Bioscavengers. Journal of Physical Chemistry B, 2014, 118, 4479-4489.	2.6	42
54	Longâ€Range Electrostaticsâ€Induced Twoâ€Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angewandte Chemie - International Edition, 2016, 55, 4924-4927.	13.8	42

PAUL LANGAN

#	Article	IF	CITATIONS
55	Regioselectivity of Enzymatic and Photochemical Single Electron Transfer Promoted Carbonâ^'Carbon Bond Fragmentation Reactions of Tetrameric Lignin Model Compounds. Journal of Organic Chemistry, 2011, 76, 2840-2852.	3.2	40
56	Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose, 2011, 18, 191-206.	4.9	39
57	A coarse-grained model for synergistic action of multiple enzymes on cellulose. Biotechnology for Biofuels, 2012, 5, 55.	6.2	39
58	Direct Determination of the Hydrogen Bonding Arrangement in Anhydrous Î ² -Chitin by Neutron Fiber Diffraction. Biomacromolecules, 2012, 13, 288-291.	5.4	39
59	Why genetic modification of lignin leads to low-recalcitrance biomass. Physical Chemistry Chemical Physics, 2015, 17, 358-364.	2.8	38
60	Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose, 2014, 21, 873-878.	4.9	37
61	A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6817-6822.	7.1	36
62	Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration. Structure, 2011, 19, 523-533.	3.3	36
63	High resolution neutron fibre diffraction data on hydrogenated and deuterated cellulose. International Journal of Biological Macromolecules, 1999, 26, 279-283.	7.5	35
64	Protein structures by spallation neutron crystallography. Journal of Synchrotron Radiation, 2008, 15, 215-218.	2.4	35
65	Direct Determination of Protonation States of Histidine Residues in a 2ÂÃ Neutron Structure of Deoxy-Human Normal Adult Hemoglobin and Implications for the Bohr Effect. Journal of Molecular Biology, 2010, 398, 276-291.	4.2	35
66	Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12384-12389.	7.1	35
67	X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 11-23.	2.5	34
68	The structure of celluloses. Powder Diffraction, 2008, 23, 92-95.	0.2	33
69	Probing the Early Events Associated with Liquid Ammonia Pretreatment of Native Crystalline Cellulose. Journal of Physical Chemistry B, 2011, 115, 9782-9788.	2.6	33
70	Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins. ACS Macro Letters, 2012, 1, 568-573.	4.8	33
71	Neutron Laue diffraction in macromolecular crystallography. Physica B: Condensed Matter, 1997, 241-243, 1122-1130.	2.7	32
72	Conceptual design of a macromolecular neutron diffractometer (MaNDi) for the SNS. Journal of Applied Crystallography, 2005, 38, 964-974.	4.5	31

#	Article	IF	CITATIONS
73	Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I. Cellulose, 2010, 17, 735-745.	4.9	30
74	High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 584-591.	2.5	30
75	Controlled incorporation of deuterium into bacterial cellulose. Cellulose, 2014, 21, 927-936.	4.9	30
76	Tailored instrumentation for long-pulse neutron spallation sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 589, 34-46.	1.6	29
77	Understanding Multiscale Structural Changes During Dilute Acid Pretreatment of Switchgrass and Poplar. ACS Sustainable Chemistry and Engineering, 2017, 5, 426-435.	6.7	29
78	Coarse-Grained Model for the Interconversion between Native and Liquid Ammonia-Treated Crystalline Cellulose. Journal of Physical Chemistry B, 2012, 116, 8031-8037.	2.6	27
79	Improving the accuracy and resolution of neutron crystallographic data by three-dimensional profile fitting of Bragg peaks in reciprocal space. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1085-1095.	2.3	27
80	Low- and room-temperature X-ray structures of protein kinase A ternary complexes shed new light on its activity. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 854-860.	2.5	26
81	Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnology for Biofuels, 2018, 11, 44.	6.2	26
82	X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design. Journal of Structural Biology, 2009, 166, 162-171.	2.8	25
83	In silicostudies of crystalline cellulose and its degradation by enzymes. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1184-1188.	2.5	25
84	BraggNet: integrating Bragg peaks using neural networks. Journal of Applied Crystallography, 2019, 52, 854-863.	4.5	25
85	Insights into the Phosphoryl Transfer Catalyzed by cAMP-Dependent Protein Kinase: An X-ray Crystallographic Study of Complexes with Various Metals and Peptide Substrate SP20. Biochemistry, 2013, 52, 3721-3727.	2.5	24
86	Protein crystallography with spallation neutrons. Journal of Synchrotron Radiation, 2004, 11, 80-82.	2.4	23
87	L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. Structure, 2014, 22, 1287-1300.	3.3	22
88	Phosphoryl Transfer Reaction Snapshots in Crystals. Journal of Biological Chemistry, 2015, 290, 15538-15548.	3.4	22
89	Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure, 2015, 23, 2331-2340.	3.3	22
90	Preliminary time-of-flight neutron diffraction study on diisopropyl fluorophosphatase (DFPase) fromLoligo vulgaris. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 42-45.	0.7	21

#	Article	IF	CITATIONS
91	Seeing the chemistry in biology with neutron crystallography. Physical Chemistry Chemical Physics, 2013, 15, 13705.	2.8	21
92	A preliminary time-of-flight neutron diffraction study ofStreptomyces rubiginosusD-xylose isomerase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 241-249.	2.5	20
93	Collecting and Processing Neutron Fibre Diffraction Data from a Single-Crystal Diffractometer. Journal of Applied Crystallography, 1996, 29, 383-389.	4.5	19
94	Inorganic pyrophosphatase crystals from <i>Thermococcus thioreducens</i> for X-ray and neutron diffraction. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1482-1487.	0.7	19
95	Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design. Protein Engineering, Design and Selection, 2014, 27, 59-64.	2.1	19
96	The location of water around the DNA double-helix. Physica B: Condensed Matter, 1989, 156-157, 468-470.	2.7	18
97	Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase). Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1131-1138.	2.5	18
98	Inhibition of <scp>D</scp> -xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1201-1206.	2.5	18
99	Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose. Cellulose, 2013, 20, 1563-1571.	4.9	18
100	The crystal structure of mono-ethylenediamine β-chitin from synchrotron X-ray fiber diffraction. Carbohydrate Polymers, 2013, 92, 1737-1742.	10.2	18
101	Metal-Free cAMP-Dependent Protein Kinase Can Catalyze Phosphoryl Transfer. Biochemistry, 2014, 53, 3179-3186.	2.5	18
102	Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structureâ€guided surface engineering. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1225-1237.	2.6	18
103	New Developments in Instrumentation for X-ray and Neutron Fibre Diffraction Experiments. Journal of Applied Crystallography, 1998, 31, 758-766.	4.5	17
104	Neutron Laue diffraction studies of coenzyme cob(II)alamin. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 51-59.	2.5	17
105	Neutron Technologies for Bioenergy Research. Industrial Biotechnology, 2012, 8, 209-216.	0.8	17
106	X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 379-385.	0.7	16
107	Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers, 2015, 103, 67-73.	2.4	15
108	Evaluation of models determined by neutron diffraction and proposed improvements to their validation and deposition. Acta Crystallographica Section D: Structural Biology, 2018, 74, 800-813.	2.3	15

#	Article	IF	CITATIONS
109	A preliminary time-of-flight neutron diffraction study on amicyanin fromParacoccus denitrificans. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 640-642.	2.5	14
110	The initial structure of cellulose during ammonia pretreatment. Cellulose, 2014, 21, 1117-1126.	4.9	14
111	Preliminary joint neutron and X-ray crystallographic study of human carbonic anhydrase II. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 495-498.	0.7	13
112	Synthesis, capillary crystallization and preliminary joint X-ray and neutron crystallographic study of Z-DNA without polyamine at low pH. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 453-456.	0.7	11
113	Macromolecular neutron crystallography at the Protein Crystallography Station (PCS). Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1206-1212.	2.5	11
114	Production of Bacterial Cellulose with Controlled Deuterium–Hydrogen Substitution for Neutron Scattering Studies. Methods in Enzymology, 2015, 565, 123-146.	1.0	11
115	Preliminary neutron and ultrahigh-resolution X-ray diffraction studies of the aspartic proteinase endothiapepsin cocrystallized with a <i>gem</i> -diol inhibitor. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 1080-1083.	0.7	10
116	Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1178-1183.	2.5	10
117	Neutron diffraction from fibers. Crystallography Reviews, 2005, 11, 125-147.	1.5	9
118	Preliminary time-of-flight neutron diffraction study of human deoxyhemoglobin. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 270-273.	0.7	9
119	Room-temperature ultrahigh-resolution time-of-flight neutron and X-ray diffraction studies of H/D-exchanged crambin. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 119-123.	0.7	9
120	Neutron diffraction studies of the structure of PEEK. Physica B: Condensed Matter, 1992, 180-181, 528-530.	2.7	8
121	W3Y single mutant of rubredoxin fromPyrococcus furiosus: a preliminary time-of-flight neutron study. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 200-202.	2.5	8
122	Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid–Base Catalysis. ACS Catalysis, 2021, 11, 5873-5884.	11.2	8
123	A neutron diffraction study of the distribution of water in the A form of the DNA double helix. Physica B: Condensed Matter, 1992, 180-181, 759-761.	2.7	7
124	A low-temperature neutron diffraction study of Mn12-acetate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 909-910.	0.4	7
125	Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP ⁺ . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 814-818.	0.8	7
126	Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state. Acta Crystallographica Section D: Structural Biology, 2016, 72, 892-903.	2.3	7

#	Article	IF	CITATIONS
127	Responses to <i>`Atomic resolution': a badly abused term in structural biology</i> . Acta Crystallographica Section D: Structural Biology, 2017, 73, 381-383.	2.3	7
128	Neutron fibre diffraction studies of DNA hydration. Physica B: Condensed Matter, 1995, 213-214, 783-785.	2.7	6
129	Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1144-1152.	2.5	6
130	Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus <i>Trichoderma longibrachiatum</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 283-286.	0.7	6
131	Longâ€Range Electrostaticsâ€Induced Twoâ€Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angewandte Chemie, 2016, 128, 5008-5011.	2.0	6
132	Molecular Interactions in an α-Chitin/Hydrazine Complex: Dynamic Hydrogen Bonds and Improvement of Polymeric Crystallinity. Crystal Growth and Design, 2016, 16, 3345-3352.	3.0	6
133	Using neutron protein crystallography to understand enzyme mechanisms. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1257-1261.	2.5	5
134	Opportunities and challenges with the growth of neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1121-1123.	2.5	5
135	Solid–solvent molecular interactions observed in crystal structures of β-chitin complexes. Cellulose, 2014, 21, 1007-1014.	4.9	5
136	A high-angle neutron fibre diffraction study of the hydration of B-DNA. Physica B: Condensed Matter, 1997, 241-243, 1166-1168.	2.7	4
137	Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 474-477.	0.7	4
138	Preliminary joint neutron time-of-flight and X-ray crystallographic study of human ABO(H) blood group A glycosyltransferase. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 258-262.	0.7	4
139	High angle neutron fibre diffraction studies of the distribution of water around the D form of DNA. Physica B: Condensed Matter, 1992, 180-181, 737-739.	2.7	3
140	Neutron fibre diffraction: Recent advances at the ILL. Physica B: Condensed Matter, 1997, 234-236, 213-214.	2.7	3
141	The distribution of water in highly ordered fibres of hyaluronic acid. Physica B: Condensed Matter, 1997, 234-236, 215-216.	2.7	3
142	Ordered water around deuterated A-DNA by neutron fibre diffraction. Physica B: Condensed Matter, 1997, 241-243, 1156-1158.	2.7	3
143	100Âyears of cellulose fiber diffraction and the emergence of complementary techniques. Cellulose, 2014, 21, 1087-1089.	4.9	3
144	Attenuation corrections for X-ray and neutron fibre diffraction studies. Journal of Applied Crystallography, 1995, 28, 49-52.	4.5	2

#	Article	IF	CITATIONS
145	Battery cell analysis via changes in the slope of the "as-found" data to identify marginal capacity cells. , 0, , .		2
146	New Facilities Expand Protein Crystallography Opportunities. Physics Today, 2004, 57, 19-19.	0.3	2
147	Heterologous expression, purification, crystallization and preliminary X-ray analysis ofTrichoderma reeseixylanase II and four variants. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 320-323.	0.7	2
148	Neutron diffraction measurements on the C15 Laves phase TaV2Dx. Physica B: Condensed Matter, 1997, 234-236, 945-948.	2.7	1
149	<title>Device for cutting the time tail from spallation neutron pulses</title> ., 2001, , .		1
150	Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1249-1256.	2.5	1
151	Time-of-flight neutron diffraction study of bovine γ-chymotrypsin at the Protein Crystallography Station. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 587-590.	0.7	1
152	Preparation of Tunicin Cellulose IÎ ² Samples for X-ray and Neutron Diffraction. Fibre Diffraction Review, 2003, 11, 75.	0.6	1
153	Multiresolution Molecular Dynamics Simulations of Crystalline Nanofibrils. Biophysical Journal, 2011, 100, 310a.	0.5	0
154	Structural Studies of Plant CESA Support Eighteen CESAs in the Plant CSC. Biophysical Journal, 2016, 110, 27a.	0.5	0
155	Need for Neutron Diffraction Instruments. Science, 1999, 286, 1089-1089.	12.6	0