Bradley K Yoder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2513026/publications.pdf

Version: 2024-02-01

94 papers 10,754 citations

44069 48 h-index 86 g-index

95 all docs 95 docs citations 95 times ranked 9380 citing authors

#	Article	IF	CITATIONS
1	A transgenic <scp>Alx4â€CreER</scp> mouse to analyze anterior limb and nephric duct development. Developmental Dynamics, 2022, 251, 1524-1534.	1.8	2
2	Evolutionarily conserved genetic interactions between <i>nphp-4</i> and <i>bbs-5</i> mutations exacerbate ciliopathy phenotypes. Genetics, 2022, 220, .	2.9	7
3	A mouse model of BBS identifies developmental and homeostatic effects of BBS5 mutation and identifies novel pituitary abnormalities. Human Molecular Genetics, 2021, 30, 234-246.	2.9	10
4	Ly6chi Infiltrating Macrophages Promote Cyst Progression in Injured Conditional Ift88 Mice. Kidney360, 2021, 2, 989-995.	2.1	4
5	Early infiltrating macrophage subtype correlates with late-stage phenotypic outcome in a mouse model of hepatorenal fibrocystic disease. Laboratory Investigation, 2021, 101, 1382-1393.	3.7	O
6	Kidney resident macrophages in the rat have minimal turnover and replacement by blood monocytes. American Journal of Physiology - Renal Physiology, 2021, 321, F162-F169.	2.7	7
7	Resident Macrophages in Cystic Kidney Disease. Kidney360, 2021, 2, 167-175.	2.1	16
8	ATXN10 Is Required for Embryonic Heart Development and Maintenance of Epithelial Cell Phenotypes in the Adult Kidney and Pancreas. Frontiers in Cell and Developmental Biology, 2021, 9, 705182.	3.7	0
9	BBSome Component BBS5 Is Required for Cone Photoreceptor Protein Trafficking and Outer Segment Maintenance., 2020, 61, 17.		19
10	Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fibroblast conversion to iPSCs. Scientific Reports, 2020, 10, 19710.	3.3	9
11	Interferon Regulatory Factorâ€5 in Resident Macrophage Promotes Polycystic Kidney Disease. Kidney360, 2020, 1, 179-190.	2.1	19
12	Mks6 mutations reveal tissue―and cell typeâ€specific roles for the cilia transition zone. FASEB Journal, 2019, 33, 1440-1455.	0.5	19
13	Tissue-Resident Macrophages Promote Renal Cystic Disease. Journal of the American Society of Nephrology: JASN, 2019, 30, 1841-1856.	6.1	51
14	Intravital visualization of the primary cilium, tubule flow, and innate immune cells in the kidney utilizing an abdominal window imaging approach. Methods in Cell Biology, 2019, 154, 67-83.	1.1	10
15	Urinary T cells correlate with rate of renal function loss in autosomal dominant polycystic kidney disease. Physiological Reports, 2019, 7, e13951.	1.7	25
16	Single-Cell RNA Sequencing Identifies Candidate Renal Resident Macrophage Gene Expression Signatures across Species. Journal of the American Society of Nephrology: JASN, 2019, 30, 767-781.	6.1	126
17	Heterozygous <i>Pkhd1</i> ^{C642*} mice develop cystic liver disease and proximal tubule ectasia that mimics radiographic signs of medullary sponge kidney. American Journal of Physiology - Renal Physiology, 2019, 316, F463-F472.	2.7	17
18	Truncating <i>PKHD1</i> and <i>PKD2</i> mutations alter energy metabolism. American Journal of Physiology - Renal Physiology, 2019, 316, F414-F425.	2.7	16

#	Article	IF	CITATIONS
19	Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight, 2019, 4, .	5.0	75
20	Renal hypertrophic signaling triggers activation of kidney immune response and accelerates cystogenesis in polycystic kidney disease. FASEB Journal, 2019, 33, 747.1.	0.5	0
21	Ectopic Phosphorylated Creb Marks Dedifferentiated Proximal Tubules in Cystic Kidney Disease. American Journal of Pathology, 2018, 188, 84-94.	3.8	9
22	Primary cilia disruption differentially affects the infiltrating and resident macrophage compartment in the liver. American Journal of Physiology - Renal Physiology, 2018, 314, G677-G689.	3.4	23
23	Cilia and Polycystic Kidney Disease. , 2018, , 87-110.		0
24	Inflammation and Fibrosis in Polycystic Kidney Disease. Results and Problems in Cell Differentiation, 2017, 60, 323-344.	0.7	68
25	The Tumor-Associated Clycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype. Cancer Research, 2016, 76, 3978-3988.	0.9	134
26	Non-essential role for cilia in coordinating precise alignment of lens fibres. Mechanisms of Development, 2016, 139, 10-17.	1.7	13
27	Coiled-coil domain containing 42 (Ccdc 42) is necessary for proper sperm development and male fertility in the mouse. Developmental Biology, 2016, 412, 208-218.	2.0	54
28	A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4. PLoS Genetics, 2016, 12, e1005841.	3.5	17
29	Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease. PLoS Genetics, 2016, 12, e1006220.	3.5	33
30	Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse. PLoS ONE, 2015, 10, e0135678.	2.5	13
31	Heterotrimeric Kinesin-2 (KIF3) Mediates Transition Zone and Axoneme Formation of Mouse Photoreceptors. Journal of Biological Chemistry, 2015, 290, 12765-12778.	3.4	53
32	SnapShot: Sensing and Signaling by Cilia. Cell, 2015, 161, 692-692.e1.	28.9	27
33	Hippocampal and Cortical Primary Cilia Are Required for Aversive Memory in Mice. PLoS ONE, 2014, 9, e106576.	2.5	58
34	High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis. PLoS ONE, 2014, 9, e114632.	2.5	112
35	Monitoring Endosomal Trafficking of the G Protein-Coupled Receptor Somatostatin Receptor 3. Methods in Enzymology, 2014, 534, 261-280.	1.0	3
36	Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10335-10340.	7.1	81

#	Article	IF	CITATIONS
37	An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia, 2013, 2, 8.	1.8	68
38	Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton, 2013, 70, 24-31.	2.0	42
39	Renal Cilia Structure, Function, and Physiology. , 2013, , 319-346.		0
40	Proximal Tubule Proliferation Is Insufficient to Induce Rapid Cyst Formation after Cilia Disruption. Journal of the American Society of Nephrology: JASN, 2013, 24, 456-464.	6.1	44
41	Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7796-7801.	7.1	82
42	Quantitative Peptidomics of Purkinje Cell Degeneration Mice. PLoS ONE, 2013, 8, e60981.	2.5	18
43	Neuronal Cilia and Obesity. , 2013, , 165-191.		0
44	Increased Na ⁺ /H ⁺ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease. American Journal of Physiology - Cell Physiology, 2012, 302, C1436-C1451.	4.6	12
45	Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nature Medicine, 2012, 18, 1423-1428.	30.7	103
46	Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis. Cilia, 2012, 1, 20.	1.8	26
47	Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Developmental Biology, 2011, 360, 66-76.	2.0	59
48	GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome–acroplaxome complex, head–tail coupling apparatus and tail. Developmental Dynamics, 2011, 240, 723-736.	1.8	77
49	Role of epidermal primary cilia in the homeostasis of skin and hair follicles. Development (Cambridge), 2011, 138, 1675-1685.	2.5	58
50	Soluble levels of cytosolic tubulin regulate ciliary length control. Molecular Biology of the Cell, 2011, 22, 806-816.	2.1	150
51	Lack of Primary Cilia Primes Shear-Induced Endothelial-to-Mesenchymal Transition. Circulation Research, 2011, 108, 1093-1101.	4. 5	173
52	Directional Cell Migration and Chemotaxis in Wound Healing Response to PDGF-AA are Coordinated by the Primary Cilium in Fibroblasts. Cellular Physiology and Biochemistry, 2010, 25, 279-292.	1.6	226
53	The zebrafish $\langle i \rangle$ foxj $1a \langle i \rangle$ transcription factor regulates cilia function in response to injury and epithelial stretch. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18499-18504.	7.1	80
54	Primary Cilia and Signaling Pathways in Mammalian Development, Health and Disease. Nephron Physiology, 2009, 111, p39-p53.	1.2	241

#	Article	IF	CITATIONS
55	Primary cilia regulate Shh activity in the control of molar tooth number. Development (Cambridge), 2009, 136, 897-903.	2.5	113
56	The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. Journal of Cell Science, 2009, 122, 3070-3082.	2.0	91
57	The Oak Ridge Polycystic Kidney mouse: Modeling ciliopathies of mice and men. Developmental Dynamics, 2008, 237, 1960-1971.	1.8	112
58	Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Developmental Dynamics, 2008, 237, 2039-2052.	1.8	69
59	Role for primary cilia in the regulation of mouse ovarian function. Developmental Dynamics, 2008, 237, 2053-2060.	1.8	18
60	THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nature Genetics, 2008, 40, 403-410.	21.4	313
61	Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genetics, 2008, 40, 69-77.	21.4	306
62	Chapter 13 Ciliary Dysfunction in Developmental Abnormalities and Diseases. Current Topics in Developmental Biology, 2008, 85, 371-427.	2.2	213
63	Preface. Current Topics in Developmental Biology, 2008, 85, xv-xix.	2.2	4
64	Intraflagellar transport is essential for endochondral bone formation. Development (Cambridge), 2007, 134, 307-316.	2.5	343
65	Role of Primary Cilia in the Pathogenesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 1381-1388.	6.1	257
66	Cilia Proteins Control Cerebellar Morphogenesis by Promoting Expansion of the Granule Progenitor Pool. Journal of Neuroscience, 2007, 27, 9780-9789.	3.6	186
67	Development of the post-natal growth plate requires intraflagellar transport proteins. Developmental Biology, 2007, 305, 202-216.	2.0	145
68	Altered pHi regulation and Na+/HCO3â^' transporter activity in choroid plexus of cilia-defective Tg737orpk mutant mouse. American Journal of Physiology - Cell Physiology, 2007, 292, C1409-C1416.	4.6	52
69	Disruption of Intraflagellar Transport in Adult Mice Leads to Obesity and Slow-Onset Cystic Kidney Disease. Current Biology, 2007, 17, 1586-1594.	3.9	425
70	Autocrine Purinergic Signaling Is Required for Monociliumâ€driven Signaling. FASEB Journal, 2007, 21, A503.	0.5	2
71	NHE Dysregulation in Cilium Deficient Mouse Renal Principal Cells from orpk Mice. FASEB Journal, 2007, 21, A504.	0.5	1
72	Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. American Journal of Physiology - Renal Physiology, 2006, 290, F1320-F1328.	2.7	86

#	Article	IF	CITATIONS
73	Heightened epithelial Na+channel-mediated Na+absorption in a murine polycystic kidney disease model epithelium lacking apical monocilia. American Journal of Physiology - Cell Physiology, 2006, 290, C952-C963.	4.6	43
74	The Primary Cilium in Cell Signaling and Cancer. Cancer Research, 2006, 66, 6463-6467.	0.9	181
75	Molecular pathogenesis of autosomal dominant polycystic kidney disease. Expert Reviews in Molecular Medicine, 2006, 8, 1-22.	3.9	46
76	Altered cell volume regulation in a mouse cellâ€model of autosomal recessive polycystic kidney disease. FASEB Journal, 2006, 20, .	0.5	0
77	Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737orpk mutant mice. Laboratory Investigation, 2005, 85, 45-64.	3.7	80
78	An incredible decade for the primary cilium: a look at a once-forgotten organelle. American Journal of Physiology - Renal Physiology, 2005, 289, F1159-F1169.	2.7	289
79	Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. American Journal of Physiology - Renal Physiology, 2005, 289, F978-F988.	2.7	144
80	Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function. PLoS Genetics, 2005, 1, e53.	3.5	815
81	Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development (Cambridge), 2005, 132, 5329-5339.	2.5	319
82	The <i>C. elegans </i> homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. Journal of Cell Science, 2005, 118, 5575-5587.	2.0	103
83	Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development (Cambridge), 2005, 132, 1907-1921.	2.5	600
84	Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene. Cell, 2004, 117, 541-552.	28.9	721
85	Cystic Kidney Diseases: All Roads Lead to the Cilium. Physiology, 2004, 19, 225-230.	3.1	77
86	Loss of the <i>Tg737</i> protein results in skeletal patterning defects. Developmental Dynamics, 2003, 227, 78-90.	1.8	121
87	Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Experimental Cell Research, 2003, 284, 249-261.	2.6	80
88	XBX-1 Encodes a Dynein Light Intermediate Chain Required for Retrograde Intraflagellar Transport and Cilia Assembly inCaenorhabditis elegans. Molecular Biology of the Cell, 2003, 14, 2057-2070.	2.1	120
89	The Polycystic Kidney Disease Proteins, Polycystin-1, Polycystin-2, Polaris, and Cystin, Are Co-Localized in Renal Cilia. Journal of the American Society of Nephrology: JASN, 2002, 13, 2508-2516.	6.1	835
90	Polaris, a protein disrupted in <i>orpk</i> mutant mice, is required for assembly of renal cilium. American Journal of Physiology - Renal Physiology, 2002, 282, F541-F552.	2.7	218

#	Article	IF	CITATIONS
91	Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. Journal of Clinical Investigation, 2002, 109, 533-540.	8.2	176
92	Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. Journal of Clinical Investigation, 2002, 109, 533-540.	8.2	131
93	Polaris, a Protein Involved in Left-Right Axis Patterning, Localizes to Basal Bodies and Cilia. Molecular Biology of the Cell, 2001, 12, 589-599.	2.1	296
94	Functional correction of renal defects in a mouse model for ARPKD through expression of the cloned wild-type Tg737 cDNA. Kidney International, 1996, 50, 1240-1248.	5. 2	34