Martin H Wühr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511899/publications.pdf

Version: 2024-02-01

		201385	197535
50	5,664 citations	27	49
papers	citations	h-index	g-index
62	62	62	0505
63	63	63	9595
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	GCN2 adapts protein synthesis to scavenging-dependent growth. Cell Systems, 2022, 13, 158-172.e9.	2.9	12
2	TMTpro Complementary Ion Quantification Increases Plexing and Sensitivity for Accurate Multiplexed Proteomics at the MS2 Level. Journal of Proteome Research, 2021, 20, 3043-3052.	1.8	23
3	Evaluating the Arrhenius equationÂfor developmental processes. Molecular Systems Biology, 2021, 17, e9895.	3.2	55
4	Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nature Chemical Biology, 2021, 17, 1178-1187.	3.9	34
5	The Shuttling Cascade in Lasso Peptide Benenodinâ€1 is Controlled by Nonâ€Covalent Interactions. Chemistry - A European Journal, 2021, 28, e202103615.	1.7	2
6	A Clickâ€Chemistryâ€Based Enrichable Crosslinker for Structural and Protein Interaction Analysis by Mass Spectrometry. ChemBioChem, 2020, 21, 103-107.	1.3	11
7	Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Reports, 2020, 31, 107783.	2.9	35
8	The gain-of-function allele <i>bamA</i> _{<i>E470K</i>} bypasses the essential requirement for BamD in \hat{I}^2 -barrel outer membrane protein assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18737-18743.	3.3	23
9	Multi-Omic Analyses Provide Links between Low-Dose Antibiotic Treatment and Induction of Secondary Metabolism in Burkholderia thailandensis. MBio, 2020, 11, .	1.8	23
10	Inference of Multisite Phosphorylation Rate Constants and Their Modulation by Pathogenic Mutations. Current Biology, 2020, 30, 877-882.e6.	1.8	14
11	Bayesian Confidence Intervals for Multiplexed Proteomics Integrate Ion-statistics with Peptide Quantification Concordance*[S]. Molecular and Cellular Proteomics, 2019, 18, 2108-2120.	2.5	23
12	Immunofluorescence of Microtubule Assemblies in Amphibian Oocytes and Early Embryos. Methods in Molecular Biology, 2019, 1920, 17-32.	0.4	2
13	A Review on Quantitative Multiplexed Proteomics. ChemBioChem, 2019, 20, 1210-1224.	1.3	224
14	Proteomics of nucleocytoplasmic partitioning. Current Opinion in Chemical Biology, 2019, 48, 55-63.	2.8	17
15	The Synthetic Phenotype of \hat{l} " <i>bamB</i> \hat{l} " <i>bamE</i> Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. MBio, 2019, 10, .	1.8	35
16	Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. ELife, 2019, 8, .	2.8	88
17	Ein auf Sulfoxid basierendes, isobares Derivatisierungsreagens f $ ilde{A}^1$ /4r die pr $ ilde{A}$ zise quantitative Massenspektrometrie. Angewandte Chemie, 2018, 130, 3008-3013.	1.6	2
18	A Sulfoxideâ€Based Isobaric Labelling Reagent for Accurate Quantitative Mass Spectrometry. Angewandte Chemie - International Edition, 2018, 57, 2958-2962.	7.2	23

#	Article	IF	CITATIONS
19	Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster. Analytical Chemistry, 2018, 90, 5032-5039.	3.2	76
20	Quantitative Proteomics of Xenopus Embryos I, Sample Preparation. Methods in Molecular Biology, 2018, 1865, 175-194.	0.4	33
21	Quantitative Proteomics for Xenopus Embryos II, Data Analysis. Methods in Molecular Biology, 2018, 1865, 195-215.	0.4	13
22	Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angewandte Chemie - International Edition, 2017, 56, 5738-5743.	7.2	207
23	Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo. Results and Problems in Cell Differentiation, 2017, 61, 243-260.	0.2	3
24	Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angewandte Chemie, 2017, 129, 5832-5837.	1.6	14
25	A Strategy to Combine Sample Multiplexing with Targeted Proteomics Assays for High-Throughput Protein Signature Characterization. Molecular Cell, 2017, 65, 361-370.	4.5	118
26	Vertebrate Embryonic Cleavage Pattern Determination. Advances in Experimental Medicine and Biology, 2017, 953, 117-171.	0.8	24
27	Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the <i>Xenopus</i> egg. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10838-E10847.	3.3	43
28	Generic Theoretical Models to Predict Division Patterns of Cleaving Embryos. Developmental Cell, 2016, 39, 667-682.	3.1	59
29	Amyloid-like Self-Assembly of a Cellular Compartment. Cell, 2016, 166, 637-650.	13.5	294
30	The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell, 2015, 162, 425-440.	13.5	1,241
31	The Nuclear Proteome of a Vertebrate. Current Biology, 2015, 25, 2663-2671.	1.8	117
32	Size Scaling of Microtubule Assemblies in Early <i>Xenopus</i> Embryos. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019182.	2.3	37
33	Generation of Multiple Reporter Ions from a Single Isobaric Reagent Increases Multiplexing Capacity for Quantitative Proteomics. Analytical Chemistry, 2015, 87, 9855-9863.	3.2	42
34	On the Relationship of Protein and mRNA Dynamics in Vertebrate Embryonic Development. Developmental Cell, 2015, 35, 383-394.	3.1	182
35	MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes. Analytical Chemistry, 2014, 86, 7150-7158.	3.2	1,130
36	Organization of early frog embryos by chemical waves emanating from centrosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130454.	1.8	33

#	Article	IF	CITATIONS
37	Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science, 2014, 346, 244-247.	6.0	114
38	Deep Proteomics of the Xenopus laevis Egg using an mRNA-Derived Reference Database. Current Biology, 2014, 24, 1467-1475.	1.8	234
39	Accurate Multiplexed Proteomics at the MS2 Level Using the Complement Reporter Ion Cluster. Analytical Chemistry, 2012, 84, 9214-9221.	3.2	138
40	Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton, 2012, 69, 738-750.	1.0	84
41	Pronuclear Migration: No Attachment? No Union, but a Futile Cycle!. Current Biology, 2012, 22, R409-R411.	1.8	3
42	Live Imaging of the Cytoskeleton in Early Cleavage-Stage Zebrafish Embryos. Methods in Cell Biology, 2011, 101, 1-18.	0.5	26
43	Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos. Journal of Cell Science, 2011, 124, 2086-2095.	1.2	69
44	A Model for Cleavage Plane Determination in Early Amphibian and Fish Embryos. Current Biology, 2010, 20, 2040-2045.	1.8	192
45	How does a millimeter-sized cell find its center?. Cell Cycle, 2009, 8, 1115-1121.	1.3	93
46	Size and Speed Go Hand in Hand in Cytokinesis. Cell, 2009, 137, 798-800.	13.5	0
47	Evidence for an Upper Limit to Mitotic Spindle Length. Current Biology, 2008, 18, 1256-1261.	1.8	193
48	Mitosis: New Roles for Myosin-X and Actin at the Spindle. Current Biology, 2008, 18, R912-R914.	1.8	18
49	Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes. Nature Cell Biology, 2006, 8, 1035-1037.	4.6	61
50	The Activation Mechanism of Hsp26 does not Require Dissociation of the Oligomer. Journal of Molecular Biology, 2005, 350, 1083-1093.	2.0	81