
Giovanni Maestri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C–C double bonds. Chemical Science, 2022, 13, 2632-2639.	7.4	14
2	Câ^'l Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Triâ€palladium. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
3	Palladium/BrÃ,nsted Acid Catalysis for Hydrofunctionalizations of Alkynes: From Tsujiâ€Trost Allylations to Stereoselective Methodologies. ChemCatChem, 2022, 14, .	3.7	6
4	"Bottled―spiro-doubly aromatic trinuclear [Pd ₂ Ru] ⁺ complexes. Chemical Science, 2021, 12, 477-486.	7.4	16
5	Recent Advances on the Synthesis of [4.3.0] Bicycles Featuring Three Heteroatoms Including a Bridgehead One. , 2021, , .		0
6	Visibleâ€Lightâ€Driven Competitive Stereo†and Regioisomerization of (<i>E</i>)â€Î²â€Nitroenones. ChemPhotoChem, 2021, 5, 871-875.	3.0	7
7	Ambient Synthesis of Tricyclic Naphthalenes via Stepwise Styryl-yne Dearomative Diels–Alder Cyclization. Organic Letters, 2021, 23, 6536-6541.	4.6	7
8	Oxidative Dearomatization of Phenols and Polycyclic Aromatics with Hydrogen Peroxide Triggered by Heterogeneous Sulfonic Acids. European Journal of Organic Chemistry, 2021, 2021, 5407-5414.	2.4	5
9	Photoelectric properties of aromatic triangular tri-palladium complexes and their catalytic applications in the Suzuki–Miyaura coupling reaction. Dalton Transactions, 2021, 50, 11834-11842.	3.3	8
10	1.14 Palladium(I)-Mediated Reactions. , 2021, , .		0
11	Inter/Intramolecular Cascade of 1,6-Enynes Catalyzed by All-Metal Aromatic Tripalladium Complexes and Carboxylic Acids. Journal of Organic Chemistry, 2021, 86, 15433-15452.	3.2	10
12	Is Aromaticity a Driving Force in Catalytic Cycles? A Case from the Cycloisomerization of Enynes Catalyzed by All-Metal Aromatic Pd ₃ ⁺ Clusters and Carboxylic Acids. Journal of Physical Chemistry A, 2021, 125, 10035-10043.	2.5	7
13	Pd-Catalysed oxidative carbonylation of α-amino amides to hydantoins under mild conditions. Chemical Communications, 2021, 58, 294-297.	4.1	6
14	Diastereoselective Isomerization of (E)â€Î²â€Nitroenones into βâ€Nitroâ€Î²,γâ€Unsaturated Ketones under Microwave Conditions. Advanced Synthesis and Catalysis, 2020, 362, 4680-4686.	4.3	7
15	Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Organic Letters, 2020, 22, 6354-6359.	4.6	18
16	Effect of surface acidity on the catalytic activity and deactivation of supported sulfonic acids during dehydration of methanol to DME. New Journal of Chemistry, 2020, 44, 16810-16820.	2.8	6
17	Functionalization of Alkenyl C–H Bonds with D2O via Pd(0)/Carboxylic Acid Catalysis. Synthesis, 2020, 52, 1762-1772.	2.3	4
18	Palladium(0)/benzoic acid catalysis merges sequences with D ₂ O-promoted labelling of C–H bonds, Chemical Science, 2019, 10, 10297-10304.	7.4	18

GIOVANNI MAESTRI

#	Article	IF	CITATIONS
19	Diastereoselective bicyclization of enynols <i>via</i> gold catalysis. Organic Chemistry Frontiers, 2019, 6, 3584-3588.	4.5	6
20	Sulfonated catalysts for methanol dehydration to dimethyl ether (DME). Materials Research Bulletin, 2019, 113, 64-69.	5.2	26
21	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie, 2019, 131, 6775-6779.	2.0	2
22	Visible‣ightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie - International Edition, 2019, 58, 6703-6707.	13.8	20
23	Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. Journal of Organic Chemistry, 2019, 84, 3477-3490.	3.2	16
24	Silica Nanoparticles Decorated with Polymeric Sulfonic Acids Trigger Selective Oxidation of Benzylic Methylenes to Aldehydic and Ketonic Carbonyls. ACS Sustainable Chemistry and Engineering, 2019, 7, 5886-5891.	6.7	13
25	Alkenyl boost for Catellani. Nature Chemistry, 2019, 11, 1082-1084.	13.6	7
26	Complementary Reactivity of 1,6-Enynes with All-Metal Aromatic Trinuclear Complexes and Carboxylic Acids. Synthesis, 2019, 51, 1216-1224.	2.3	17
27	Titania supported on silica as an efficient catalyst for deep oxidative desulfurization of a model fuel with exceptionally diluted H ₂ O ₂ . Reaction Chemistry and Engineering, 2018, 3, 13-16.	3.7	12
28	Alternative Routes to Tricyclic Cyclohexenes with Trinuclear Palladium Complexes. ACS Catalysis, 2018, 8, 144-147.	11.2	30
29	Oxidative dimerization of anilines with heterogeneous sulfonic acid catalysts. Green Chemistry, 2018, 20, 382-386.	9.0	13
30	Bi-directional alkyne tandem isomerization via Pd(0)/carboxylic acid joint catalysis: expedient access to 1,3-dienes. Chemical Communications, 2018, 54, 14021-14024.	4.1	11
31	Synthesis of Carbolines via Palladium/Carboxylic Acid Joint Catalysis. Organic Letters, 2018, 20, 3220-3224.	4.6	34
32	Enhancing Reactivity and Selectivity of Aryl Bromides: A Complementary Approach to Dibenzo[b,f]azepine Derivatives. ChemCatChem, 2018, 10, 4346-4352.	3.7	19
33	Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers. Organic Letters, 2018, 20, 5247-5250.	4.6	48
34	Visibleâ€Light, Photoredoxâ€Mediated Oxidative Tandem Nitrosoâ€Diels–Alder Reaction of Arylhydroxylamines with Conjugated Dienes. European Journal of Organic Chemistry, 2017, 2017, 2095-2098.	2.4	12
35	All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic cations. Chemical Science, 2017, 8, 7394-7402.	7.4	26
36	Pd-Catalyzed/Iodide-Promoted α-Arylation of Ketones for the Regioselective Synthesis of Isocoumarins. Journal of Organic Chemistry, 2017, 82, 8296-8303.	3.2	20

#	Article	IF	CITATIONS
37	Semi-Reduction of Internal Alkynes with Prototypical Subnanometric Metal Surfaces: Bridging Homogeneous and Heterogeneous Catalysis with Trinuclear All-Metal Aromatics. ACS Sustainable Chemistry and Engineering, 2017, 5, 8205-8212.	6.7	37
38	A Synthetic Study towards the Marmycins and Analogues. Synthesis, 2017, 49, 587-592.	2.3	6
39	Palladium- and Norbornene-Catalyzed Synthesis of Highly Functionalized Thiophenes: The Remarkable Effect of Electron-Poor Olefins as Ligand. Heterocycles, 2017, 95, 753.	0.7	1
40	Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols. Beilstein Journal of Organic Chemistry, 2016, 12, 2173-2180.	2.2	27
41	A Simple Heterogeneous Catalyst for Phosphite Addition on Carbonyl Groups. European Journal of Organic Chemistry, 2016, 2016, 463-466.	2.4	5
42	Batch versus Flow Acetalization of Benzaldehyde with HKUSTâ€1: Diffusion Pathways and Performance Comparison. ChemCatChem, 2016, 8, 1293-1297.	3.7	14
43	Selective monomethyl esterification of linear dicarboxylic acids with bifunctional alumina catalysts. Green Chemistry, 2016, 18, 5764-5768.	9.0	8
44	Pd Catalysis in Cyanide-Free Synthesis of Nitriles from Haloarenes via Isoxazolines. Organic Letters, 2016, 18, 6108-6111.	4.6	18
45	Boosting catalyst activity in cis-selective semi-reduction of internal alkynes by tailoring the assembly of all-metal aromatic tri-palladium complexes. Dalton Transactions, 2016, 45, 15786-15790.	3.3	33
46	Catalytic Semireduction of Internal Alkynes with Allâ€Metal Aromatic Complexes. ChemCatChem, 2015, 7, 3266-3269.	3.7	30
47	A Simple Synthesis of Triangular Allâ€Metal Aromatics Allowing Access to Isolobal Allâ€Metal Heteroaromatics. Chemistry - A European Journal, 2015, 21, 12271-12274.	3.3	24
48	Formal base-free homolytic aromatic substitutions via photoredox catalysis. Organic Chemistry Frontiers, 2015, 2, 464-469.	4.5	30
49	Synthesis of marmycin A and investigation into its cellular activity. Nature Chemistry, 2015, 7, 744-751.	13.6	41
50	Triethylamine and TBD supported on silica: useful heterogeneous catalysts for the reaction of β-dicarbonyl derivatives with α,β-unsaturated compounds under batch and continuous flow conditions. Arkivoc, 2015, 2015, 107-116.	0.5	1
51	Friedel-Crafts acylation reaction catalyzed by silica supported sulfonic acids: synthetic aspects and limitations. Arkivoc, 2015, 2015, 1-9.	0.5	2
52	Rapid and Convergent Assembly of Natural Benzo[c]phenanthridines by Palladium/Norbornene Catalysis. Heterocycles, 2014, 88, 807.	0.7	5
53	Synthesis of Triangular Tripalladium Cations as Nobleâ€Metal Analogues of the Cyclopropenyl Cation. Angewandte Chemie - International Edition, 2014, 53, 1987-1991.	13.8	54
54	Diastereoselective Synthesis of Dibenzoazepines through Chelation on Palladium(IV) Intermediates. Organic Letters, 2014, 16, 628-631.	4.6	65

GIOVANNI MAESTRI

#	Article	IF	CITATIONS
55	Acid-Catalyzed Formal Cycloaddition of α,β-Unsaturated Carbonyls with Epoxides: Dioxepines or Acetals?. Journal of Organic Chemistry, 2014, 79, 8477-8480.	3.2	2
56	Electrophilic activation of allenenes and allenynes: analogies and differences between BrÃ,nsted and Lewis acid activation. Chemical Society Reviews, 2014, 43, 2916-2926.	38.1	62
57	Two-fold tandem acyl-group shift/cyclization via gold catalysis. Arkivoc, 2014, 2014, 287-296.	0.5	1
58	Radical Pd(<scp>iii</scp>)/Pd(<scp>i</scp>) reductive elimination in palladium sequences. Chemical Communications, 2013, 49, 10424-10426.	4.1	41
59	Palladium/Norbornene Catalytic System: Chelation as a Tool To Control Regioselectivity of Pd(IV) Reductive Elimination. Journal of Organic Chemistry, 2013, 78, 1323-1328.	3.2	26
60	Understanding palladium complexes structures and reactivities: beyond classical point of view. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 529-541.	14.6	10
61	The Cyanamide Moiety, Synthesis and Reactivity. Synthesis, 2012, 44, 1279-1292.	2.3	75
62	Rearrangements of N-Acyl Isothioureas. Alternate Access to Acylguanidines from Cyanamides. Organic Letters, 2012, 14, 5538-5541.	4.6	30
63	Of the Ortho Effect in Palladium/Norbornene-Catalyzed Reactions: A Theoretical Investigation. Journal of the American Chemical Society, 2011, 133, 8574-8585.	13.7	176
64	Exception to the <i>ortho</i> Effect in Palladium/Norbornene Catalysis. Angewandte Chemie - International Edition, 2011, 50, 12253-12256.	13.8	87
65	Palladium atalyzed Reaction of Aryl Iodides with <i>ortho</i> â€Bromoanilines and Norbornene/Norbornadiene: Unexpected Formation of Dibenzoazepine Derivatives. Angewandte Chemie - International Edition, 2011, 50, 12257-12261.	13.8	93
66	Catalytic C–C coupling through C–H arylation of arenes or heteroarenes. Coordination Chemistry Reviews, 2010, 254, 456-469.	18.8	170
67	Expeditious Synthesis of Phenanthridines from Benzylamines via Dual Palladium Catalysis. Organic Letters, 2010, 12, 5692-5695.	4.6	98
68	Palladium/Norborneneâ€Catalyzed Synthesis of Heteroatomâ€Containing <i>o</i> â€Teraryls from Aryl Iodides and Heteroarenes through Double CH Activation in Sequence. Chemistry - A European Journal, 2009, 15, 7850-7853.	3.3	57
69	A catalytic synthesis of selectively substituted biaryls through sequential intermolecular coupling involving arene and ketone C–H bond functionalization. Chemical Communications, 2009, , 4892.	4.1	48
70	Transfer Semihydrogenation of Alkynes Catalyzed by a Zeroâ€Valent Palladium Nâ€Heterocyclic Carbene Complex. Angewandte Chemie - International Edition, 2008, 47, 3223-3226.	13.8	164