Marcel M Daadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and of Self-Renewable Human Neural Stem from iPSCs for Cell Therapy in Experimental Model of Stroke. Methods in Molecular Biology, 2022, 2389, 165-175.	0.4	2
2	Dopamine D3 receptor ligand suppresses the expression of levodopa-induced dyskinesia in nonhuman primate model of parkinson's disease. Experimental Neurology, 2022, 347, 113920.	2.0	1
3	Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions. Genes, 2021, 12, 1215.	1.0	Ο
4	Age-related cognitive decline in baboons: modeling the prodromal phase of Alzheimer's disease and related dementias. Aging, 2020, 12, 10099-10116.	1.4	12
5	Non-cell autonomous mechanism of Parkinson's disease pathology caused by G2019S LRRK2 mutation in Ashkenazi Jewish patient: Single cell analysis. Brain Research, 2019, 1722, 146342.	1.1	8
6	Assay for Assessing Mitochondrial Function in iPSC-Derived Neural Stem Cells and Dopaminergic Neurons. Methods in Molecular Biology, 2019, 1919, 161-173.	0.4	11
7	Reference Transcriptome for Deriving MarmosetÂInduced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1919, 175-186.	0.4	1
8	Isolation and Differentiation of Self-Renewable Neural Stem Cells from Marmoset-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1919, 199-204.	0.4	1
9	Single-Cell Library Preparation of iPSC-Derived Neural Stem Cells. Methods in Molecular Biology, 2019, 1919, 129-143.	0.4	2
10	Bioinformatics Analysis of Single-Cell RNA-Seq Raw Data from iPSC-Derived Neural Stem Cells. Methods in Molecular Biology, 2019, 1919, 145-159.	0.4	9
11	Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons. Methods in Molecular Biology, 2019, 1919, 89-96.	0.4	11
12	Generating Neural Stem Cells from iPSCs with Dopaminergic Neurons Reporter Gene. Methods in Molecular Biology, 2019, 1919, 119-128.	0.4	7
13	Generation of Neural Stem Cells from Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1919, 1-7.	0.4	5
14	Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage. International Journal of Molecular Sciences, 2018, 19, 2788.	1.8	9
15	Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson's disease. PLoS ONE, 2018, 13, e0202770.	1.1	35
16	Magnetic Resonance Imaging-Guided Delivery of Neural Stem Cells into the Basal Ganglia of Nonhuman Primates Reveals a Pulsatile Mode of Cell Dispersion. Stem Cells Translational Medicine, 2017, 6, 877-885.	1.6	15
17	Optogenetic Stimulation of Neural Grafts Enhances Neurotransmission and Downregulates the Inflammatory Response in Experimental Stroke Model. Cell Transplantation, 2016, 25, 1371-1380.	1.2	39
18	Impaired Arm Function and Finger Dexterity in a Nonhuman Primate Model of Stroke. Stroke, 2016, 47, 1109-1116.	1.0	23

Marcel M Daadi

#	Article	IF	CITATIONS
19	Dopaminergic Neurons from Midbrain-Specified Human Embryonic Stem Cell-Derived Neural Stem Cells Engrafted in a Monkey Model of Parkinson's Disease. PLoS ONE, 2012, 7, e41120.	1.1	61
20	Human Neural Stem Cell Grafts Modify Microglial Response and Enhance Axonal Sprouting in Neonatal Hypoxic–Ischemic Brain Injury. Stroke, 2010, 41, 516-523.	1.0	184
21	Manufacturing neurons from human embryonic stem cells: biological and regulatory aspects to develop a safe cellular product for stroke cell therapy. Regenerative Medicine, 2009, 4, 251-263.	0.8	36
22	Molecular and Magnetic Resonance Imaging of Human Embryonic Stem Cell–Derived Neural Stem Cell Grafts in Ischemic Rat Brain. Molecular Therapy, 2009, 17, 1282-1291.	3.7	163
23	Functional Engraftment of the Medial Ganglionic Eminence Cells in Experimental Stroke Model. Cell Transplantation, 2009, 18, 815-826.	1.2	66
24	In Vitro Assays for Neural Stem Cell Differentiation: Induction of Dopaminergic Phenotype. Methods in Molecular Biology, 2008, 438, 205-212.	0.4	6
25	Adherent Self-Renewable Human Embryonic Stem Cell-Derived Neural Stem Cell Line: Functional Engraftment in Experimental Stroke Model. PLoS ONE, 2008, 3, e1644.	1.1	177
26	Focal striatal dopamine may potentiate dyskinesias in parkinsonian monkeys. Experimental Neurology, 2006, 197, 363-372.	2.0	47