Mauro Mazzocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the key parameters for gas sensing through comparison of electrospun and sol-gel semiconducting oxides. Ceramics International, 2022, 48, 20948-20960.	4.8	7
2	Growth Mechanisms of ZnO Micro-Nanomorphologies and Their Role in Enhancing Gas Sensing Properties. Sensors, 2021, 21, 1331.	3.8	14
3	Abrasive properties of ZnO: Influence of different nanoforms. Tribology International, 2020, 142, 105984.	5.9	9
4	Operational functionalities of air-quality W Sn metal-oxide sensors correlating semiconductor defect levels and surface potential barriers. Science of the Total Environment, 2020, 706, 135731.	8.0	11
5	Optimized production of a highâ€performance hybrid biomaterial: biomineralized spider silk for bone tissue engineering. Journal of Applied Polymer Science, 2020, 137, 48739.	2.6	15
6	W-Sn Mixed Oxides: New Materials for Gas Sensing. Lecture Notes in Electrical Engineering, 2020, , 315-320.	0.4	0
7	Ultrasensitive Gas Sensors Based on Electrospun TiO2 and ZnO â€. Proceedings (mdpi), 2017, 1, 485.	0.2	1
8	Enhanced Gas Sensing Properties of Different ZnO 3D Hierarchical Structures. Advances in Science and Technology, 2016, 99, 48-53.	0.2	8
9	Production and characterization of lightweight vermiculite/geopolymer-based panels. Materials and Design, 2015, 85, 266-274.	7.0	74
10	Chemical treatment on alumina–zirconia composites inducing apatite formation with maintained mechanical properties. Journal of the European Ceramic Society, 2012, 32, 2113-2120.	5.7	47
11	ZrB2-Based Sponges and Lightweight Devices. International Journal of Applied Ceramic Technology, 2011, 8, 815-823.	2.1	30
12	Doped calcium–aluminium–phosphate cements for biomedical applications. Journal of Materials Science: Materials in Medicine, 2011, 22, 229-236.	3.6	9
13	Hydroxyapatite-collagen composites. Part I: can the decrease of the interactions between the two components be a physicochemical component of osteoporosis in aged bone?. Journal of Materials Science: Materials in Medicine, 2011, 22, 637-646.	3.6	8
14	Perspectives of the Si3N4-TiN ceramic composite as a biomaterial and manufacturing of complex-shaped implantable devices by electrical discharge machining (EDM). Journal of Applied Biomaterials and Biomechanics, 2010, 8, 28-32.	0.4	4
15	Surface coatings of bioactive glasses on high strength ceramic composites. Applied Surface Science, 2009, 255, 6679-6685.	6.1	22
16	On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity. Journal of Materials Science: Materials in Medicine, 2008, 19, 2881-2887.	3.6	104
17	On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment. Journal of Materials Science: Materials in Medicine, 2008, 19, 2889-2901.	3.6	83
18	Composites between hydroxyapatite and poly(ε-caprolactone) synthesized in open system at room temperature. Journal of Materials Science: Materials in Medicine, 2006, 17, 69-79.	3.6	13

MAURO MAZZOCCHI

#	Article	IF	CITATIONS
19	Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. Journal of Molecular Structure, 2005, 744-747, 221-228.	3.6	122
20	Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses. Journal of Materials Science: Materials in Medicine, 2005, 16, 119-128.	3.6	21
21	Cements for biomedical applications. Mendeleev Communications, 2004, 14, 179-180.	1.6	2
22	Osteointegration of bioactive glass-coated and uncoated zirconia in osteopenic bone: Anin vivo experimental study. Journal of Biomedical Materials Research Part B, 2004, 68A, 264-272.	3.1	33
23	Polymerization of Îμ-caprolactone initiated through powders of biological and nonbiological glasses. Journal of Applied Polymer Science, 2003, 87, 1579-1586.	2.6	2
24	Protein adsorption onto two bioactive glass-ceramics. Biomaterials, 2003, 24, 147-155.	11.4	67
25	Improvement in zirconia osseointegration by means of a biological glass coating: Anin vitro andin vivo investigation. Journal of Biomedical Materials Research Part B, 2002, 61, 282-289.	3.1	34
26	Osteointegration of bioactive glass-coated zirconia in healthy bone: an in vivo evaluation. Biomaterials, 2002, 23, 3833-3841.	11.4	54
27	Coating of ZrO2 supports with a biological glass. Journal of Materials Science: Materials in Medicine, 1998, 9, 309-316.	3.6	20
28	Characterization of zirconia coated by bioactive glass. , 1997, , 139-142.		0

3