
Anna Kashina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511295/publications.pdf Version: 2024-02-01

ANNA KACHINA

#	Article	IF	CITATIONS
1	Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 602-614.	1.0	276
2	Arginylation of Â-Actin Regulates Actin Cytoskeleton and Cell Motility. Science, 2006, 313, 192-196.	12.6	238
3	Post-translational modification and regulation of actin. Current Opinion in Cell Biology, 2013, 25, 30-38.	5.4	187
4	Differential Arginylation of Actin Isoforms Is Regulated by Coding Sequence–Dependent Degradation. Science, 2010, 329, 1534-1537.	12.6	179
5	Global Analysis of Posttranslational Protein Arginylation. PLoS Biology, 2007, 5, e258.	5.6	132
6	Arginylation Regulates Intracellular Actin Polymer Level by Modulating Actin Properties and Binding of Capping and Severing Proteins. Molecular Biology of the Cell, 2010, 21, 1350-1361.	2.1	86
7	Posttranslational arginylation as a global biological regulator. Developmental Biology, 2011, 358, 1-8.	2.0	79
8	Arginyltransferase ATE1 Catalyzes Midchain Arginylation of Proteins at Side Chain Carboxylates InAVivo. Chemistry and Biology, 2014, 21, 331-337.	6.0	72
9	Arginyltransferase Is an ATP-Independent Self-Regulating Enzyme that Forms Distinct Functional Complexes InÂVivo. Chemistry and Biology, 2011, 18, 121-130.	6.0	71
10	Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10123-10128.	7.1	65
11	Arginylation-Dependent Neural Crest Cell Migration Is Essential for Mouse Development. PLoS Genetics, 2010, 6, e1000878.	3.5	61
12	Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development (Cambridge), 2008, 135, 3881-3889.	2.5	58
13	Arginylation-dependent regulation of a proteolytic product of talin is essential for cell–cell adhesion. Journal of Cell Biology, 2012, 197, 819-836.	5.2	56
14	The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. Journal of Cell Science, 2018, 131, .	2.0	55
15	Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nature Protocols, 2009, 4, 325-332.	12.0	52
16	Diverse functions of homologous actin isoforms are defined by their nucleotide, rather than their amino acid sequence. ELife, 2017, 6, .	6.0	44
17	Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2012, 53, 333-341.	1.9	43
18	βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons. Journal of Neuroscience, 2017, 37, 6442-6459.	3.6	43

Anna Kashina

#	Article	IF	CITATIONS
19	Arginylation and Methylation Double Up to Regulate Nuclear Proteins and Nuclear Architecture InAVivo. Chemistry and Biology, 2011, 18, 1369-1378.	6.0	37
20	Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nature Communications, 2015, 6, 7517.	12.8	36
21	Regulation of actin isoforms in cellular and developmental processes. Seminars in Cell and Developmental Biology, 2020, 102, 113-121.	5.0	35
22	Post-translational Modifications of the Protein Termini. Frontiers in Cell and Developmental Biology, 2021, 9, 719590.	3.7	35
23	Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Frontiers in Molecular Biosciences, 2020, 7, 610617.	3.5	35
24	Rapid and dynamic arginylation of the leading edge βâ€actin is required for cell migration. Traffic, 2018, 19, 263-272.	2.7	32
25	Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength. Cell Reports, 2014, 8, 470-476.	6.4	31
26	Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases. EMBO Reports, 2006, 7, 800-805.	4.5	30
27	Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Scientific Reports, 2017, 7, 11323.	3.3	30
28	Conditional Tek Promoter-Driven Deletion of Arginyltransferase in the Germ Line Causes Defects in Gametogenesis and Early Embryonic Lethality in Mice. PLoS ONE, 2009, 4, e7734.	2.5	30
29	Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development. Developmental Biology, 2017, 430, 41-51.	2.0	29
30	Different translation dynamics of \hat{l}^2 - and \hat{l}^3 -actin regulates cell migration. ELife, 2021, 10, .	6.0	28
31	Protein Arginylation, a Global Biological Regulator that Targets Actin Cytoskeleton and the Muscle. Anatomical Record, 2014, 297, 1630-1636.	1.4	25
32	Target site specificity and in vivo complexity of the mammalian arginylome. Scientific Reports, 2018, 8, 16177.	3.3	25
33	Posttranslational modifications of the cytoskeleton. Cytoskeleton, 2021, 78, 142-173.	2.0	22
34	tRNAArg-Derived Fragments Can Serve as Arginine Donors for Protein Arginylation. Cell Chemical Biology, 2020, 27, 839-849.e4.	5.2	19
35	Quantification of intracellular N-terminal β-actin arginylation. Scientific Reports, 2019, 9, 16669.	3.3	18
36	Effects of Glutamate Arginylation on α-Synuclein: Studying an Unusual Post-Translational Modification through Semisynthesis. Journal of the American Chemical Society, 2020, 142, 21786-21798.	13.7	16

Anna Kashina

#	Article	IF	CITATIONS
37	Protein Posttranslational Signatures Identified in COVID-19 Patient Plasma. Frontiers in Cell and Developmental Biology, 2022, 10, 807149.	3.7	15
38	Intracellular organelle transport: few motors, many signals. Trends in Cell Biology, 2005, 15, 396-398.	7.9	13
39	Purification and Use of tRNA for Enzymatic Post-translational Addition of Amino Acids to Proteins. STAR Protocols, 2020, 1, 100207.	1.2	11
40	Posttranscriptional and Posttranslational Regulation of Actin. Anatomical Record, 2018, 301, 1991-1998.	1.4	9
41	Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function. American Journal of Physiology - Cell Physiology, 2019, 316, C668-C677.	4.6	8
42	$\hat{I}\pm$ -Synuclein arginylation in the human brain. Translational Neurodegeneration, 2022, 11, 20.	8.0	8
43	A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy. Journal of Cell Science, 2022, 135, .	2.0	8
44	Biochemical analysis of protein arginylation. Methods in Enzymology, 2019, 626, 89-113.	1.0	6
45	Arginyltransferase (Ate1) regulates the RGS7 protein level and the sensitivity of light-evoked ON-bipolar responses. Scientific Reports, 2021, 11, 9376.	3.3	6
46	Cysteine-Based Mimic of Arginylation Reproduces Neuroprotective Effects of the Authentic Post-Translational Modification on α-Synuclein. Journal of the American Chemical Society, 2022, 144, 7911-7918.	13.7	4
47	Arginylation Regulates G-protein Signaling in the Retina. Frontiers in Cell and Developmental Biology, 2021, 9, 807345.	3.7	2
48	Arginylâ€ŧRNAâ€protein transferase 1 (ATE1) promotes melanoma cell growth and migration. FEBS Letters, 2022, 596, 1468-1480.	2.8	1
49	Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation. International Journal of Molecular Sciences, 2022, 23, 314.	4.1	0