
Xiaolong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2511286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chemical Society Reviews, 2015, 44, 8484-8575.	38.1	752
2	Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 913-944.	5.5	492
3	New Design Tactics in OLEDs Using Functionalized 2â€Phenylpyridineâ€Type Cyclometalates of Iridium(III) and Platinum(II). Chemistry - an Asian Journal, 2011, 6, 1706-1727.	3.3	353
4	Recent design tactics for high performance white polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 1760.	5.5	247
5	A Nonâ€Doped Phosphorescent Organic Lightâ€Emitting Device with Above 31% External Quantum Efficiency. Advanced Materials, 2014, 26, 8107-8113.	21.0	146
6	From Mononuclear to Dinuclear Iridium(III) Complex: Effective Tuning of the Optoelectronic Characteristics for Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 1720-1727.	4.0	127
7	Recent Advances in Solutionâ€Processable Dendrimers for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes (PHOLEDs). Asian Journal of Organic Chemistry, 2015, 4, 394-429.	2.7	105
8	Trifunctional IrIII ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices. Chemical Communications, 2014, 50, 2473.	4.1	78
9	Enhancing Molecular Aggregations by Intermolecular Hydrogen Bonds to Develop Phosphorescent Emitters for Highâ€Performance Nearâ€Infrared OLEDs. Advanced Science, 2019, 6, 1801930.	11.2	78
10	Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067.	11.2	76
11	Versatile phosphorescent color tuning of highly efficient borylated iridium(iii) cyclometalates by manipulating the electron-accepting capacity of the dimesitylboron group. Journal of Materials Chemistry C, 2013, 1, 3317.	5.5	70
12	Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their two-colour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy. Journal of Materials Chemistry, 2012, 22, 7136.	6.7	64
13	Cyclometalated Platinum Complexes with Aggregation-Induced Phosphorescence Emission Behavior and Highly Efficient Electroluminescent Ability. Chemistry of Materials, 2018, 30, 929-946.	6.7	64
14	Asymmetric <i>tris</i> -Heteroleptic Iridium ^{III} Complexes Containing a 9-Phenyl-9-phosphafluorene Oxide Moiety with Enhanced Charge Carrier Injection/Transporting Properties for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Chemistry of Materials, 2016, 28, 8556-8569.	6.7	58
15	Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs. Journal of Materials Chemistry C, 2019, 7, 11953-11963.	5.5	58
16	Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties. ACS Applied Materials & Interfaces, 2015, 7, 24703-24714.	8.0	57
17	Achieving High-Performance Solution-Processed Orange OLEDs with the Phosphorescent Cyclometalated Trinuclear Pt(II) Complex. ACS Applied Materials & Interfaces, 2018, 10, 10227-10235.	8.0	55
18	<i>tris</i> â€Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry - an Asian Journal, 2015, 10, 252-262.	3.3	53

XIAOLONG YANG

#	Article	IF	CITATIONS
19	Pyrimidine-Based Mononuclear and Dinuclear Iridium(III) Complexes for High Performance Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 33874-33887.	8.0	53
20	Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium(III) Complexes with the Thianthrene 5,5,10,10-Tetraoxide Moiety. ACS Applied Materials & Interfaces, 2019, 11, 26152-26164.	8.0	52
21	Novel iridium(<scp>iii</scp>) complexes bearing dimesitylboron groups with nearly 100% phosphorescent quantum yields for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7871-7883.	5.5	49
22	Effective blocking of the molecular aggregation of novel truxene-based emitters with spirobifluorene and electron-donating moieties for furnishing highly efficient non-doped blue-emitting OLEDs. Journal of Materials Chemistry C, 2015, 3, 5783-5794.	5.5	41
23	Dynamic dual stage phosphorescence chromatic change in a diborylated iridium phosphor for fluoride ion sensing with concentration discriminating capability. RSC Advances, 2013, 3, 6553.	3.6	35
24	Organic Emitters with a Rigid 9-Phenyl-9-phosphafluorene Oxide Moiety as the Acceptor and Their Thermally Activated Delayed Fluorescence Behavior. ACS Applied Materials & Interfaces, 2019, 11, 27112-27124.	8.0	35
25	Phosphorescent Platinum(II) Complexes Bearing 2-Vinylpyridine-type Ligands: Synthesis, Electrochemical and Photophysical Properties, and Tuning of Electrophosphorescent Behavior by Main-Group Moieties. Inorganic Chemistry, 2014, 53, 12986-13000.	4.0	34
26	Effective phosphorescence quenching in borylated Pt ^{II} ppy-type phosphors and their application as I ^{â^'} ion sensors in aqueous medium. Chemical Communications, 2013, 49, 4406-4408.	4.1	32
27	Highly efficient electroluminescent Pt ^{II} ppy-type complexes with monodentate ligands. Chemical Communications, 2017, 53, 7581-7584.	4.1	31
28	Aggregation-induced emission triggered by the radiative-transition-switch of a cyclometallated Pt(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2019, 7, 12552-12559.	5.5	30
29	Novel Emission Colorâ€Tuning Strategies in Heteroleptic Phosphorescent Ir(III) and Pt(II) Complexes. Chemical Record, 2019, 19, 1710-1728.	5.8	29
30	Simple Tuning of the Optoelectronic Properties of Ir ^{III} and Pt ^{II} Electrophosphors Based on Linkage Isomer Formation with a Naphthylthiazolyl Moiety. European Journal of Inorganic Chemistry, 2012, 2012, 2278-2288.	2.0	28
31	Novel Au ^I polyynes and their high optical power limiting performances both in solution and in prototype devices. Journal of Materials Chemistry C, 2018, 6, 6023-6032.	5.5	28
32	High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 16360-16374.	8.0	27
33	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	7.3	26
34	Aggregation-induced phosphorescence emission (AIPE) behaviors in Pt ^{II} (C^N)(N-donor) Tj ETQq0 0 0 skeleton and their optoelectronic properties. Journal of Materials Chemistry C, 2021, 9, 2334-2349.	9 rgBT /Ove 5.5	erlock 10 Tf 24
35	Optimized trade-offs between triplet emission and transparency in Pt(ii) acetylides through phenylsulfonyl units for achieving good optical power limiting performance. Journal of Materials Chemistry C, 2016, 4, 5626-5633.	5.5	23
36	Asymmetric tris-heteroleptic iridium(<scp>iii</scp>) complexes containing three different 2-phenylpyridine-type ligands: a new strategy for improving the electroluminescence ability of phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 9453-9464.	5.5	23

XIAOLONG YANG

#	Article	IF	CITATIONS
37	Isomers of Coumarin-Based Cyclometalated Ir(III) Complexes with Easily Tuned Phosphorescent Color and Features for Highly Efficient Organic Light-Emitting Diodes. Inorganic Chemistry, 2019, 58, 7393-7408.	4.0	23
38	Tris(cyclometalated) Iridium(III) Phosphorescent Complexes with 2â€Phenylthiazoleâ€Type Ligands: Synthesis, Photophysical, Redox and Electrophosphorescent Behavior. European Journal of Inorganic Chemistry, 2013, 2013, 4754-4763.	2.0	21
39	Homoleptic thiazole-based Ir ^{III} phosphorescent complexes for achieving both high EL efficiencies and an optimized trade-off among the key parameters of solution-processed WOLEDs. Journal of Materials Chemistry C, 2017, 5, 208-219.	5.5	21
40	Platinum(ii) polymetallayne-based phosphorescent polymers with enhanced triplet energy-transfer: synthesis, photophysical, electrochemistry, and electrophosphorescent investigation. RSC Advances, 2015, 5, 36507-36519.	3.6	20
41	Asymmetric Heteroleptic Ir(III) Phosphorescent Complexes with Aromatic Selenide and Selenophene Groups: Synthesis and Photophysical, Electrochemical, and Electrophosphorescent Behaviors. Inorganic Chemistry, 2018, 57, 11027-11043.	4.0	20
42	Towards high performance solution-processed orange organic light-emitting devices: precisely-adjusting properties of lr(<scp>iii</scp>) complexes by reasonably engineering the asymmetric configuration with second functionalized cyclometalating ligands. Journal of Materials Chemistry C, 2019, 7, 8836-8846.	5.5	20
43	Platinum(<scp>ii</scp>) acetylide complexes with star- and V-shaped configurations possessing good trade-off between optical transparency and optical power limiting performance. Journal of Materials Chemistry C, 2017, 5, 11672-11682.	5.5	18
44	Novel phosphorescent polymers containing both ambipolar segments and functionalized Ir ^{III} phosphorescent moieties: synthesis, photophysical, redox, and electrophosphorescence investigation. Journal of Materials Chemistry C, 2014, 2, 9523-9535.	5.5	17
45	New heterobimetallic Au(<scp>i</scp>)–Pt(<scp>ii</scp>) polyynes achieving a good trade-off between transparency and optical power limiting performance. Journal of Materials Chemistry C, 2018, 6, 11416-11426.	5.5	17
46	High Efficiency Fluorescent Electroluminescence with Extremely Low Efficiency Rollâ€Off Generated by a Donor–Bianthracene–Acceptor Structure: Utilizing Perpendicular Twisted Intramolecular Charge Transfer Excited State. Advanced Optical Materials, 2018, 6, 1800060.	7.3	17
47	High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(<scp>iii</scp>) complex. Materials Chemistry Frontiers, 2019, 3, 376-384.	5.9	17
48	Dinuclear Ir(III) complex based on different flanking and bridging cyclometalated ligands: An impressive molecular framework for developing high performance phosphorescent emitters. Chemical Engineering Journal, 2020, 391, 123505.	12.7	17
49	An Efficient Hole Transporting Polymer for Quantum Dot Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100731.	3.7	16
50	Photophysical and optical power limiting behaviors of Au(I) acetylides with diethynyl aromatic ligands showing different electronic features. Journal of Organometallic Chemistry, 2016, 804, 80-86.	1.8	14
51	Unsymmetric Heteroleptic Ir(III) Complexes with 2-Phenylquinoline and Coumarin-Based Ligand Isomers for Tuning Character of Triplet Excited States and Achieving High Electroluminescent Efficiencies. Inorganic Chemistry, 2020, 59, 12362-12374.	4.0	13
52	Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center π-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chemical Engineering Journal, 2021, 413, 127445.	12.7	13
53	Enhancing the electroluminescence performances of novel platinum(ii) polymetallayne-based phosphorescent polymers through employing functionalized IrIII phosphorescent units and facilitating triplet energy transfer. RSC Advances, 2015, 5, 12100-12110.	3.6	11
54	Facilitating triplet energy-transfer in polymetallayne-based phosphorescent polymers with iridium(III) units and the great potential in achieving high electroluminescent performances. Journal of Organometallic Chemistry, 2015, 794, 1-10.	1.8	11

XIAOLONG YANG

#	Article	IF	CITATIONS
55	Efficient dinuclear Pt(<scp>ii</scp>) complexes based on the triphenylphosphine oxide scaffold for high performance solution-processed OLEDs. Journal of Materials Chemistry C, 2021, 9, 5373-5378.	5.5	10
56	Coordination polymers based on bis-Zn ^{II} salphen complexes and functional ditopic ligands for efficient polymer light-emitting diodes (PLEDs). Polymer Chemistry, 2017, 8, 6368-6377.	3.9	9
57	Unsymmetric 2-phenylpyridine (ppy)-type cyclometalated Ir(<scp>iii</scp>) complexes bearing both 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene and phenylsulfonyl groups for tuning optoelectronic properties and electroluminescence abilities. Inorganic Chemistry Frontiers, 2020, 7, 1651-1666.	6.0	9
58	lridium(<scp>iii</scp>) complexes with the dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]phosphole oxide group and their high optical power limiting performances. Dalton Transactions, 2020, 49, 4967-4976.	3.3	9
59	Highly efficient solution-processed pure yellow OLEDs based on dinuclear Pt(<scp>ii</scp>) complexes. Materials Chemistry Frontiers, 2021, 5, 5698-5705.	5.9	9
60	Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Organic Electronics, 2021, 91, 106101.	2.6	9
61	Manipulating MLCT transition character with ppy-type four-coordinate organoboron skeleton for highly efficient long-wavelength Ir-based phosphors in organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12650-12660.	5.5	9
62	Synthesis of 2,2′-biimidazole-based platinum(<scp>ii</scp>) polymetallaynes and tuning their fluorescent response behaviors to Cu ²⁺ ions through optimizing the configuration of the organic spacers and steric effect. RSC Advances, 2015, 5, 88758-88766.	3.6	8
63	Photophysical properties and optical power limiting ability of Pt(II) polyynes bearing fluorene-type ligands with ethynyl units at different positions. Journal of Organometallic Chemistry, 2019, 895, 28-36.	1.8	7
64	The synthesis of cyclometalated platinum(<scp>ii</scp>) complexes with benzoaryl-pyridines as C^N ligands for investigating their photophysical, electrochemical and electroluminescent properties. Dalton Transactions, 2020, 49, 15633-15645.	3.3	7
65	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 36020-36032.	8.0	7
66	Managing Charge and Exciton Transporting Behavior in White Organic Lightâ€Emitting Devices for High Power Efficiency and Superior Color Stability. Advanced Electronic Materials, 2015, 1, 1400040.	5.1	6
67	Universal polymeric hosts adopting cardo-type backbone prepared by palladium-free catalyst with precisely controlled triplet energy levels and their application for highly efficient solution-processed phosphorescent organic light-emitting devices. Chemical Engineering Journal, 2021, 406, 126717.	12.7	5
68	Red-emitting IrIII(C^N)2(P-donor ligand)Cl-type complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for both red and white OLEDs. Dyes and Pigments, 2022, 205, 110538.	3.7	5
69	AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chemical Engineering Journal, 2022, 449, 137457.	12.7	5
70	lr ^{III} (C^N) ₂ (P-donor ligand)Cl-type complexes bearing functional groups and showing aggregation-induced phosphorescence emission (AIPE) behavior for highly efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 12330-12341.	5.5	4
71	Inside Cover: New Design Tactics in OLEDs Using Functionalized 2-Phenylpyridine-Type Cyclometalates of Iridium(III) and Platinum(II) (Chem. Asian J. 7/2011). Chemistry - an Asian Journal, 2011, 6, 1630-1630.	3.3	3
72	Mono-, di- and tri-nuclear Pt ^{II} (C^N)(N-donor ligand)Cl complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for efficient solution-processed organic light-emitting devices. Materials Chemistry Frontiers, 2021, 5, 4160-4173.	5.9	2

#	Article	IF	CITATIONS
73	Analysis of forward approach for upper bounding end-to-end transmission delays over distributed real-time avionics networks. Aeronautical Journal, 2020, 124, 1399-1435.	1.6	Ο