Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/251043/publications.pdf

Version: 2024-02-01

61	1,098	18	29
papers	citations	h-index	g-index
61	61	61	382
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy. Journal of Magnesium and Alloys, 2023, 11, 694-705.	11.9	14
2	Numerical Simulation and Experimental Study on Semi-solid Forming Process of 319s Aluminum Alloy Test Bar. International Journal of Metalcasting, 2023, 17, 481-498.	1.9	3
3	Effects of Alternating Magnetic Field on the Hot Tearing Susceptibility and Microstructure of Al-5Cu Alloy. International Journal of Metalcasting, 2023, 17, 373-385.	1.9	8
4	Effect of alternating magnetic fields on hot tearing susceptibility of Mg–4Zn–1.5Ca alloy. Materials Science and Technology, 2023, 39, 50-61.	1.6	4
5	Microstructure, mechanical properties and first-principle analysis of vacuum die-cast Mg–7Al alloy with Sn addition. Rare Metals, 2022, 41, 1961-1967.	7.1	11
6	Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process. International Journal of Metalcasting, 2022, 16, 878-893.	1.9	11
7	Microstructure and mechanical properties of extrusion ZC61 alloys under different dynamic compression loading directions. Materials Today Communications, 2022, 30, 103086.	1.9	1
8	Quasi-in-situ study of the twinning evolution of ZC61 alloy during dynamic ED- ERD compression process. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142576.	5.6	3
9	Effects of Zn Content on Hot Tearing Susceptibility of Mg–Zn–Gd–Y–Zr Alloys. International Journal of Metalcasting, 2022, 16, 1902-1914.	1.9	4
10	Insight into magnetic properties and magnetocaloric effect of an Ising-type polyhedral chain. Polymer, 2022, 246, 124756.	3.8	26
11	Effect of Ca/Al ratio on hot tearing susceptibility of Mg–Al–Ca alloy. Journal of Alloys and Compounds, 2022, 911, 165113.	5.5	15
12	Compensation and critical characteristics of the ferrimagnetic bilayer graphdiyne film with RKKY interaction. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	39
13	Hot Tearing Behavior of $\frac{Mg}{-}4ext{Zn}_{-}xext{Sn}_{-}0.6ext{Zr}$ Alloys. International Journal of Metalcasting, 2021, 15, 292-305.	1.9	9
14	Effect of Pouring and Mold Temperatures on Hot Tearing Susceptibility of WE43 Magnesium Alloy. International Journal of Metalcasting, 2021, 15, 576-586.	1.9	11
15	Effect of Ca Content on Hot Tearing Susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) Alloys. International Journal of Metalcasting, 2021, 15, 1298-1308.	1.9	7
16	Investigation of the microstructure and properties of extrusion-shear deformed ZC61 magnesium alloy under high strain rate deformation. Materials Characterization, 2021, 172, 110839.	4.4	14
17	Fabrication of fine-grained, high strength and toughness Mg alloy by extrusionâ´'shearing process. Transactions of Nonferrous Metals Society of China, 2021, 31, 666-678.	4.2	19
18	Monte Carlo study of magnetic behaviors in a ferrimagnetic Ising ladder-like boronene nanoribbon. Superlattices and Microstructures, 2021, 151, 106833.	3.1	32

#	Article	IF	CITATIONS
19	Influence of a low-frequency alternating magnetic field on hot tearing susceptibility of EV31 magnesium alloy. China Foundry, 2021, 18, 229-238.	1.4	6
20	Compressive deformation behavior of ultrafine-grained Mg-3Zn-1.2Ca-0.6Zr alloy at room temperature. Journal of Alloys and Compounds, 2021, 871, 159581.	5.5	9
21	First-principles study of the lattice vibration, elastic anisotropy and thermodynamical properties of Tantalum Silicide with the different crystal structures. Vacuum, 2021, 191, 110410.	3.5	19
22	Quasi-in-situ investigation on extension twinning behavior of extruded ZC61 alloy during dynamic compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141992.	5.6	7
23	Effect of aging-treatment on dynamic compression behaviour and microstructure of ZK60 alloy. Materials Science and Technology, 2021, 37, 1117-1128.	1.6	1
24	Magnetic properties of a fullerene-like X ₂₀ structure with embedded metal atom. Physica Scripta, 2021, 96, 125858.	2.5	1
25	Monte Carlo study of magnetization plateaus and thermodynamic properties of a nano-graphene with a sandwich-like structure in a longitudinal magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113721.	2.7	34
26	Effect of Yttrium on Hot Tearing Susceptibility of Mg–6Zn–1Cu–0.6Zr Alloys. International Journal of Metalcasting, 2020, 14, 179-190.	1.9	16
27	Monte Carlo study of an Ising nanoisland with bilayer graphene-like structure in a longitudinal magnetic field. Journal of Physics and Chemistry of Solids, 2020, 136, 109174.	4.0	26
28	Microstructure, mechanical properties, and texture evolution of Mg–Zn–Y–Zr alloy fabricated by hot extrusion–shearing process. Journal of Materials Science, 2020, 55, 375-388.	3.7	15
29	altimg="si1.svg"> <mml:mrow><mml:mo stretchy="true">{</mml:mo><mml:mn>10</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo></mml:mo></mml:mover></mml:mrow><mml:mn>2}<td>າl:ၮီဂိ> < mı</td><td>ml:230</td></mml:mn></mml:mrow>	າl:ၮီဂိ> < mı	ml: 23 0
30	during in-situ tension, Journal of Alloys and Compounds, 2020, 817, 152967. Study on magnetic behaviors in a diluted ferrimagnetic Ising graphene nanoribbon. Superlattices and Microstructures, 2020, 147, 106701.	3.1	30
31	Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg–1Zn–xY alloys. Journal of Magnesium and Alloys, 2020, 8, 1176-1185.	11.9	21
32	Microstructure and mechanical properties of Mg-Zn-Ca-Zr alloy fabricated by hot extrusion-shearing process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139937.	5.6	26
33	Dynamic magnetic behaviors of a double-layer core/shell graphene nanoribbon in a time-dependent magnetic field. Results in Physics, 2020, 19, 103573.	4.1	17
34	Influence of Nd on Hot Tearing Susceptibility and Mechanism of Mg-Zn-Y-Zr Alloys. Journal of Materials Engineering and Performance, 2020, 29, 6714-6726.	2.5	9
35	Effect of yttrium addition on dynamic mechanical properties, microstructure, and fracture behavior of extrusion-shear ZC61 \hat{A} + \hat{A} xY (x \hat{A} = \hat{A} 0, 1, 2, 3) alloys. Materials Characterization, 2020, 169, 110615.	4.4	9
36	Dynamic compressive behaviour and microstructural evolution of extrusion-shear deformed ZC61 alloy. Materials Science and Technology, 2020, 36, 1148-1161.	1.6	7

#	Article	IF	CITATIONS
37	Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy. Journal of Materials Processing Technology, 2020, 282, 116679.	6.3	15
38	Effect of Cu on microstructure, mechanical properties, and texture evolution of ZK60 alloy fabricated by hot extrusionâ´'shearing process. Transactions of Nonferrous Metals Society of China, 2020, 30, 1511-1523.	4.2	13
39	Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field. Acta Metallurgica Sinica (English Letters), 2020, 33, 1259-1270.	2.9	16
40	Magnetic behaviors in a ternary metallic nanoisland with bilayer hexagonal core-shell structure. Journal of Physics and Chemistry of Solids, 2019, 135, 109110.	4.0	29
41	Effect of Y content on hot tearing susceptibility and mechanical properties of AXJ530-xY alloys. Materials Research Express, 2019, 6, 106508.	1.6	6
42	Magnetic properties in graphene-like nanoisland bilayer: Monte Carlo study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 86-95.	2.7	41
43	An investigation on hot tearing of AZ91 alloys with yttrium additions. Materials Research Express, 2019, 6, 016554.	1.6	4
44	Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 309-317.	5. 6	35
45	Magnetic and thermodynamic properties of a ternary metal nanoisland: A Monte Carlo study. Physica A: Statistical Mechanics and Its Applications, 2019, 514, 319-335.	2.6	49
46	Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca-xSn Alloys. Journal of Materials Engineering and Performance, 2018, 27, 612-623.	2.5	14
47	Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy. Materials Research Express, 2018, 5, 036513.	1.6	5
48	Solidification pathways and hot tearing susceptibility of MgZnxY4Zr0.5 alloys. China Foundry, 2018, 15, 124-131.	1.4	2
49	Enhanced strengthening by two-step progressive solution and aging treatment in AM50â^4%(Zn,Y) magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 2419-2426.	4.2	7
50	Effect of heat treatments on mechanical properties and corrosion behavior of MgY3Zn2Al magnesium alloy. Materials Research Express, 2018, 5, 106507.	1.6	2
51	Effects of Copper Content and Mold Temperature on the Hot Tearing Susceptibility of Mg-7Zn-xCu-0.6Zr Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3444-3455.	2.1	15
52	Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure. Journal of Alloys and Compounds, 2017, 701, 935-949.	5.5	105
53	Effect of Cu Additions on Microstructure, Mechanical Properties and Hot-Tearing Susceptibility of Mg-6Zn-0.6Zr Alloys. Journal of Materials Engineering and Performance, 2016, 25, 5530-5539.	2.5	16
54	First principles investigation of binary intermetallics in Mgâ€"Alâ€"Caâ€"Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties. Transactions of Nonferrous Metals Society of China, 2016, 26, 203-212.	4.2	30

FENG WANG

#	ARTICLE	IF	CITATION
55	Microstructure and mechanical properties of Mg–4Zn– <i>x</i> Y alloys prepared by hot-extrusion. Journal of Materials Research, 2015, 30, 1965-1972.	2.6	3
56	Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Transactions of Nonferrous Metals Society of China, 2014, 24, 907-914.	4.2	38
57	Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: A first-principles calculation. Computational Materials Science, 2014, 88, 61-70.	3.0	38
58	Influences of Ca and Y Addition on the Microstructure and Corrosion Resistance of Vacuum Die-Cast AZ91 Alloy. Acta Metallurgica Sinica (English Letters), 2014, 27, 609-614.	2.9	11
59	First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg–Zn–Ca–Cu alloy. Journal of Magnesium and Alloys, 2013, 1, 256-262.	11.9	64
60	Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s311-s317.	4.2	31
61	Study on the Hot Tearing Susceptibility of Mg-4Zn-xSn-1Ca Alloys. International Journal of Metalcasting, $0,1.$	1.9	2