
Pedro José Rivero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2510035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Referenced Optical Fiber Sensor Based on LSPR Generated by Gold and Silver Nanoparticles Embedded in Layer-by-Layer Nanostructured Coatings. Chemosensors, 2022, 10, 77.	1.8	11
2	In Situ Synthesis of Gold Nanoparticles in Layer-by-Layer Polymeric Coatings for the Fabrication of Optical Fiber Sensors. Polymers, 2022, 14, 776.	2.0	6
3	Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. Coatings, 2022, 12, 862.	1.2	6
4	The Role of the Fiber/Bead Hierarchical Microstructure on the Properties of PVDF Coatings Deposited by Electrospinning. Polymers, 2021, 13, 464.	2.0	8
5	Trends in the Implementation of Advanced Plasmonic Materials in Optical Fiber Sensors (2010–2020). Chemosensors, 2021, 9, 64.	1.8	15
6	Antibacterial Activity of Photocatalytic Metal Oxide Thin Films Deposited by Layer-by-Layer Self-Assembly. Journal of Nanoscience and Nanotechnology, 2021, 21, 2855-2863.	0.9	2
7	Evaluation of the Photocatalytic Activity and Anticorrosion Performance of Electrospun Fibers Doped with Metallic Oxides. Polymers, 2021, 13, 2011.	2.0	13
8	Effect of Ti on Microstructure, Mechanical Properties and Corrosion Behavior of a Nickel-Aluminum Bronze Alloy. Materials Research, 2021, 24, .	0.6	4
9	Micro/nanodeposition techniques for enhanced optical fiber sensors. , 2021, , 531-573.		3
10	Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Polymers, 2021, 13, 4164.	2.0	15
11	An Optical Fiber Sensor for Hg2+ Detection Based on the LSPR of Silver and Gold Nanoparticles Embedded in a Polymeric Matrix as an Effective Sensing Material. , 2021, 5, .		2
12	Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers. Polymers, 2021, 13, 4312.	2.0	4
13	Corrosion of Cast Aluminum Alloys: A Review. Metals, 2020, 10, 1384.	1.0	50
14	Evaluation of Functionalized Coatings for the Prevention of Ice Accretion by Using Icing Wind Tunnel Tests. Coatings, 2020, 10, 636.	1.2	15
15	Designing Multifunctional Protective PVC Electrospun Fibers with Tunable Properties. Polymers, 2020, 12, 2086.	2.0	10
16	Electrospinning: A Powerful Tool to Improve the Corrosion Resistance of Metallic Surfaces Using Nanofibrous Coatings. Metals, 2020, 10, 350.	1.0	33
17	A Comparative Study in the Tribological Behavior of DLC Coatings Deposited by HiPIMS Technology with Positive Pulses. Metals, 2020, 10, 174.	1.0	12
18	A Comparative Study of Multifunctional Coatings Based on Electrospun Fibers with Incorporated ZnO Nanoparticles. Coatings, 2019, 9, 367.	1.2	16

Pedro José Rivero

#	Article	IF	CITATIONS
19	Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films. Sensors, 2019, 19, 3872.	2.1	15
20	Multifunctional Protective PVC-ZnO Nanocomposite Coatings Deposited on Aluminum Alloys by Electrospinning. Coatings, 2019, 9, 216.	1.2	23
21	Layer-by-Layer Nano-assembly: A Powerful Tool for Optical Fiber Sensing Applications. Sensors, 2019, 19, 683.	2.1	52
22	Optical fiber sensors based on gold nanorods embedded in polymeric thin films. Sensors and Actuators B: Chemical, 2018, 255, 2105-2112.	4.0	37
23	Hydrophobic and Corrosion Behavior of Sol-Gel Hybrid Coatings Based on the Combination of TiO2 NPs and Fluorinated Chains for Aluminum Alloys Protection. Metals, 2018, 8, 1076.	1.0	19
24	Design of Nanostructured Functional Coatings by Using Wet-Chemistry Methods. Coatings, 2018, 8, 76.	1.2	21
25	Optical Fiber Sensors Based on Polymeric Sensitive Coatings. Polymers, 2018, 10, 280.	2.0	55
26	Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nanocoating for the design of corrosion resistant and hydrophobic surfaces. Applied Surface Science, 2017, 419, 138-149.	3.1	56
27	A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 251, 624-631.	4.0	55
28	Optical sensors based on lossy-mode resonances. Sensors and Actuators B: Chemical, 2017, 240, 174-185.	4.0	182
29	Effect of the Temperature in the Mechanical Properties of Austenite, Ferrite and Sigma Phases of Duplex Stainless Steels Using Hardness, Microhardness and Nanoindentation Techniques. Metals, 2017, 7, 219.	1.0	26
30	Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors, 2017, 17, 2312.	2.1	48
31	Localized Surface Plasmon Resonance for Optical Fiber-Sensing Applications. , 2017, , .		4
32	Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings. Microsystem Technologies, 2016, 22, 1821-1829.	1.2	35
33	Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters. , 2015, , .		2
34	Optical fiber pH sensor based on gold nanoparticles into polymeric coatings. , 2015, , .		3
35	Nanomaterials for Functional Textiles and Fibers. Nanoscale Research Letters, 2015, 10, 501.	3.1	219
36	A COMPARATIVE STUDY IN THE SENSITIVITY OF OPTICAL FIBER REFRACTOMETERS BASED ON THE INCORPORATION OF GOLD NANOPARTICLES INTO LAYERBY-Â LAYER FILMS. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 822-841.	0.4	9

Pedro José Rivero

#	Article	IF	CITATIONS
37	Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR). , 2014, , .		4
38	Fiber-optic Lossy Mode Resonance Sensors. Procedia Engineering, 2014, 87, 3-8.	1.2	26
39	A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films. Nanoscale Research Letters, 2014, 9, 301.	3.1	25
40	Fiber optic sensors based on lossy mode resonances. , 2014, , .		0
41	Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Research Letters, 2013, 8, 101.	3.1	61
42	Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles. Nanoscale Research Letters, 2013, 8, 438.	3.1	27
43	Electrospun nanofiber mats for evanescent optical fiber sensors. Sensors and Actuators B: Chemical, 2013, 176, 569-576.	4.0	36
44	A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sensors and Actuators B: Chemical, 2013, 187, 40-44.	4.0	44
45	Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators B: Chemical, 2012, 173, 244-249.	4.0	84
46	An antibacterial submicron fiber mat with <i>in situ</i> synthesized silver nanoparticles. Journal of Applied Polymer Science, 2012, 126, 1228-1235.	1.3	26
47	Single-stage in situ synthesis of silver nanoparticles in antibacterial self-assembled overlays. Colloid and Polymer Science, 2012, 290, 785-792.	1.0	16
48	Humidity sensor based on silver nanoparticles embedded in a polymeric coating. International Journal on Smart Sensing and Intelligent Systems, 2012, 5, 71-83.	0.4	12
49	Optical sensor based on polymer electrospun nanofibers for sensing humidity. , 2011, , .		1
50	Humidity sensor based on silver nanoparticles embedded in a polymeric coating. , 2011, , .		3
51	An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles. Nanoscale Research Letters, 2011, 6, 305.	3.1	80
52	An antibacterial surface coating composed of PAH/SiO ₂ nanostructurated films by layer by layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2774-2777.	0.8	14
53	Electrospinning Technique as a Powerful Tool for the Design of Superhydrophobic Surfaces. , 0, , .		2